模数定理:高密度

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2025-06-17 DOI:10.1112/mtk.70030
David J. Grynkiewicz
{"title":"模数定理:高密度","authors":"David J. Grynkiewicz","doi":"10.1112/mtk.70030","DOIUrl":null,"url":null,"abstract":"<p>The <span></span><math></math> Theorem for <span></span><math></math> asserts that, if <span></span><math></math> are finite, nonempty subsets with <span></span><math></math> and <span></span><math></math>, then there exist arithmetic progressions <span></span><math></math> and <span></span><math></math> of common difference such that <span></span><math></math> and <span></span><math></math> for all <span></span><math></math>. These are instances of Freiman's theorem with precise bounds. There is much partial progress extending this result to nonempty subsets <span></span><math></math> with <span></span><math></math> prime, <span></span><math></math> and <span></span><math></math>. The ideal conjectured density restriction under which such a version of the <span></span><math></math> Theorem modulo <span></span><math></math> is expected is <span></span><math></math>. Under this ideal density constraint, we show that there are arithmetic progressions <span></span><math></math>, <span></span><math></math>, and <span></span><math></math> of common difference with <span></span><math></math> and <span></span><math></math> for all <span></span><math></math>, where <span></span><math></math>, provided <span></span><math></math>. This generalizes a result of Serra and Zémor [33] by extending their work from the special case <span></span><math></math> to that of general sumsets <span></span><math></math>, removes all unnecessary sufficiently large <span></span><math></math> restrictions, and improves (even in the case <span></span><math></math>) their constant 100-fold, from 0.0001 to 0.01. As part of the proof, we additionally obtain a yet better 1000-fold improvement of their constants at the cost of a near optimal density restriction of the form <span></span><math></math> (Theorem 3.5 and Corollary 3.7). These give rare high-density versions of the <span></span><math></math> Theorem for general sumsets <span></span><math></math> modulo <span></span><math></math> and are the first instances with tangible (rather than effectively existential) values for the constants for general sumsets <span></span><math></math> with high density, or indeed for any density without added constraints on the relative sizes of <span></span><math></math> and <span></span><math></math>.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The theorem modulo a prime: High density for\",\"authors\":\"David J. Grynkiewicz\",\"doi\":\"10.1112/mtk.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <span></span><math></math> Theorem for <span></span><math></math> asserts that, if <span></span><math></math> are finite, nonempty subsets with <span></span><math></math> and <span></span><math></math>, then there exist arithmetic progressions <span></span><math></math> and <span></span><math></math> of common difference such that <span></span><math></math> and <span></span><math></math> for all <span></span><math></math>. These are instances of Freiman's theorem with precise bounds. There is much partial progress extending this result to nonempty subsets <span></span><math></math> with <span></span><math></math> prime, <span></span><math></math> and <span></span><math></math>. The ideal conjectured density restriction under which such a version of the <span></span><math></math> Theorem modulo <span></span><math></math> is expected is <span></span><math></math>. Under this ideal density constraint, we show that there are arithmetic progressions <span></span><math></math>, <span></span><math></math>, and <span></span><math></math> of common difference with <span></span><math></math> and <span></span><math></math> for all <span></span><math></math>, where <span></span><math></math>, provided <span></span><math></math>. This generalizes a result of Serra and Zémor [33] by extending their work from the special case <span></span><math></math> to that of general sumsets <span></span><math></math>, removes all unnecessary sufficiently large <span></span><math></math> restrictions, and improves (even in the case <span></span><math></math>) their constant 100-fold, from 0.0001 to 0.01. As part of the proof, we additionally obtain a yet better 1000-fold improvement of their constants at the cost of a near optimal density restriction of the form <span></span><math></math> (Theorem 3.5 and Corollary 3.7). These give rare high-density versions of the <span></span><math></math> Theorem for general sumsets <span></span><math></math> modulo <span></span><math></math> and are the first instances with tangible (rather than effectively existential) values for the constants for general sumsets <span></span><math></math> with high density, or indeed for any density without added constraints on the relative sizes of <span></span><math></math> and <span></span><math></math>.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":\"71 3\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.70030\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.70030","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

定理断言,如果有有限的非空子集具有和,则存在等差数列和公差数列,使得所有的和。这些都是具有精确边界的Freiman定理的实例。将这一结果推广到素数、和的非空子集上,取得了很大的部分进展。理想的推测密度限制下,这样一个版本的定理模被期望是。在这个理想密度约束下,我们证明了存在等差数列,,和与所有的和所有的公差数列,其中,提供。这通过将Serra和zsammor[33]的工作从特殊情况扩展到一般情况,从而推广了Serra和zsammor[33]的结果,消除了所有不必要的足够大的限制,并将(即使在这种情况下)它们的常数提高了100倍,从0.0001到0.01。作为证明的一部分,我们还以接近最优密度限制的形式(定理3.5和推论3.7)为代价,获得了它们常数的更好的1000倍改进。这些给出了一般和集模定理的罕见高密度版本,并且是具有高密度的一般和集的常量的有形(而不是有效存在的)值的第一个实例,或者实际上对于任何密度没有添加和的相对大小约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The theorem modulo a prime: High density for

The Theorem for asserts that, if are finite, nonempty subsets with and , then there exist arithmetic progressions and of common difference such that and for all . These are instances of Freiman's theorem with precise bounds. There is much partial progress extending this result to nonempty subsets with prime, and . The ideal conjectured density restriction under which such a version of the Theorem modulo is expected is . Under this ideal density constraint, we show that there are arithmetic progressions , , and of common difference with and for all , where , provided . This generalizes a result of Serra and Zémor [33] by extending their work from the special case to that of general sumsets , removes all unnecessary sufficiently large restrictions, and improves (even in the case ) their constant 100-fold, from 0.0001 to 0.01. As part of the proof, we additionally obtain a yet better 1000-fold improvement of their constants at the cost of a near optimal density restriction of the form (Theorem 3.5 and Corollary 3.7). These give rare high-density versions of the Theorem for general sumsets modulo and are the first instances with tangible (rather than effectively existential) values for the constants for general sumsets with high density, or indeed for any density without added constraints on the relative sizes of and .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信