下载PDF
{"title":"Z $\\mathcal {Z}$ -stable C *$ {\\rm C}^*$ -代数的一致迹补上的迹","authors":"Samuel Evington","doi":"10.1112/jlms.70207","DOIUrl":null,"url":null,"abstract":"<p>The uniform tracial completion of a <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm C}^*$</annotation>\n </semantics></math>-algebra <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> with compact trace space <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n <mo>≠</mo>\n <mi>∅</mi>\n </mrow>\n <annotation>$T(A) \\ne \\emptyset$</annotation>\n </semantics></math> is obtained by completing the unit ball with respect to the uniform 2-seminorm <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mi>a</mi>\n <mo>∥</mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mi>T</mi>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mo>sup</mo>\n <mrow>\n <mi>τ</mi>\n <mo>∈</mo>\n <mi>T</mi>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <mi>τ</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>a</mi>\n <mo>∗</mo>\n </msup>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\Vert a\\Vert _{2,T(A)}=\\sup _{\\tau \\in T(A)} \\tau (a^*a)^{1/2}$</annotation>\n </semantics></math>. The <i>trace problem</i> asks whether every trace on the uniform tracial completion is the <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mo>·</mo>\n <mo>∥</mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mi>T</mi>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$\\Vert \\cdot \\Vert _{2,T(A)}$</annotation>\n </semantics></math>-continuous extension of a trace on <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>. We answer this question positively in the case of <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm C}^*$</annotation>\n </semantics></math>-algebras that tensorially absorb the Jiang–Su algebra, such as those studied in the Elliott classification programme.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70207","citationCount":"0","resultStr":"{\"title\":\"Traces on the uniform tracial completion of \\n \\n Z\\n $\\\\mathcal {Z}$\\n -stable \\n \\n \\n C\\n ∗\\n \\n ${\\\\rm C}^*$\\n -algebras\",\"authors\":\"Samuel Evington\",\"doi\":\"10.1112/jlms.70207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The uniform tracial completion of a <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>${\\\\rm C}^*$</annotation>\\n </semantics></math>-algebra <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> with compact trace space <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>)</mo>\\n <mo>≠</mo>\\n <mi>∅</mi>\\n </mrow>\\n <annotation>$T(A) \\\\ne \\\\emptyset$</annotation>\\n </semantics></math> is obtained by completing the unit ball with respect to the uniform 2-seminorm <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>∥</mo>\\n <mi>a</mi>\\n <mo>∥</mo>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>T</mi>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>)</mo>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mo>sup</mo>\\n <mrow>\\n <mi>τ</mi>\\n <mo>∈</mo>\\n <mi>T</mi>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>)</mo>\\n </mrow>\\n </msub>\\n <mi>τ</mi>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>a</mi>\\n <mo>∗</mo>\\n </msup>\\n <mi>a</mi>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\Vert a\\\\Vert _{2,T(A)}=\\\\sup _{\\\\tau \\\\in T(A)} \\\\tau (a^*a)^{1/2}$</annotation>\\n </semantics></math>. The <i>trace problem</i> asks whether every trace on the uniform tracial completion is the <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>∥</mo>\\n <mo>·</mo>\\n <mo>∥</mo>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>T</mi>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>)</mo>\\n </mrow>\\n </msub>\\n <annotation>$\\\\Vert \\\\cdot \\\\Vert _{2,T(A)}$</annotation>\\n </semantics></math>-continuous extension of a trace on <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>. We answer this question positively in the case of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>${\\\\rm C}^*$</annotation>\\n </semantics></math>-algebras that tensorially absorb the Jiang–Su algebra, such as those studied in the Elliott classification programme.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 6\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70207\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70207\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70207","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用