基于脑脊液无标记三维免疫细胞形态学的中枢神经系统感染诊断和预后深度学习模型

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Bo Kyu Choi, Ho Heon Yang, Jong Hyun Kim, JaeSeong Hong, Kyung Min Kim, Yu Rang Park
{"title":"基于脑脊液无标记三维免疫细胞形态学的中枢神经系统感染诊断和预后深度学习模型","authors":"Bo Kyu Choi,&nbsp;Ho Heon Yang,&nbsp;Jong Hyun Kim,&nbsp;JaeSeong Hong,&nbsp;Kyung Min Kim,&nbsp;Yu Rang Park","doi":"10.1002/aisy.70005","DOIUrl":null,"url":null,"abstract":"<p><b>Deep-Learning Model for Central Nervous SystemInfection Diagnosis</b>\n </p><p>In article number 2401145, Kyung Min Kim, Yu Rang Park, and co-workers describe their study on central nervous system (CNS) infection diagnosis and prognosis prediction using a deep-learning model and label-free 3D holotomography. It combines a conceptual CNS infection visualization, a holotomography device, and immune cell images from cerebrospinal fluid (CSF). Their model analyzes CSF immune cell morphology to differentiate infection etiology and predict outcomes. This rapid, non-invasive approach enhances CNS infection diagnostics, improving patient care.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.70005","citationCount":"0","resultStr":"{\"title\":\"Deep-Learning Model for Central Nervous System Infection Diagnosis and Prognosis Using Label-Free 3D Immune-Cell Morphology in the Cerebrospinal Fluid\",\"authors\":\"Bo Kyu Choi,&nbsp;Ho Heon Yang,&nbsp;Jong Hyun Kim,&nbsp;JaeSeong Hong,&nbsp;Kyung Min Kim,&nbsp;Yu Rang Park\",\"doi\":\"10.1002/aisy.70005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Deep-Learning Model for Central Nervous SystemInfection Diagnosis</b>\\n </p><p>In article number 2401145, Kyung Min Kim, Yu Rang Park, and co-workers describe their study on central nervous system (CNS) infection diagnosis and prognosis prediction using a deep-learning model and label-free 3D holotomography. It combines a conceptual CNS infection visualization, a holotomography device, and immune cell images from cerebrospinal fluid (CSF). Their model analyzes CSF immune cell morphology to differentiate infection etiology and predict outcomes. This rapid, non-invasive approach enhances CNS infection diagnostics, improving patient care.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.70005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.70005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在文章编号2401145中,Kyung Min Kim, Yu Rang Park及其同事描述了他们使用深度学习模型和无标签3D全息摄影技术对中枢神经系统(CNS)感染诊断和预后预测的研究。它结合了概念性中枢神经系统感染可视化、全息断层扫描设备和脑脊液(CSF)免疫细胞图像。他们的模型分析脑脊液免疫细胞形态以区分感染病因并预测结果。这种快速、无创的方法增强了中枢神经系统感染的诊断,改善了患者的护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep-Learning Model for Central Nervous System Infection Diagnosis and Prognosis Using Label-Free 3D Immune-Cell Morphology in the Cerebrospinal Fluid

Deep-Learning Model for Central Nervous SystemInfection Diagnosis

In article number 2401145, Kyung Min Kim, Yu Rang Park, and co-workers describe their study on central nervous system (CNS) infection diagnosis and prognosis prediction using a deep-learning model and label-free 3D holotomography. It combines a conceptual CNS infection visualization, a holotomography device, and immune cell images from cerebrospinal fluid (CSF). Their model analyzes CSF immune cell morphology to differentiate infection etiology and predict outcomes. This rapid, non-invasive approach enhances CNS infection diagnostics, improving patient care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信