Bo Kyu Choi, Ho Heon Yang, Jong Hyun Kim, JaeSeong Hong, Kyung Min Kim, Yu Rang Park
{"title":"基于脑脊液无标记三维免疫细胞形态学的中枢神经系统感染诊断和预后深度学习模型","authors":"Bo Kyu Choi, Ho Heon Yang, Jong Hyun Kim, JaeSeong Hong, Kyung Min Kim, Yu Rang Park","doi":"10.1002/aisy.70005","DOIUrl":null,"url":null,"abstract":"<p><b>Deep-Learning Model for Central Nervous SystemInfection Diagnosis</b>\n </p><p>In article number 2401145, Kyung Min Kim, Yu Rang Park, and co-workers describe their study on central nervous system (CNS) infection diagnosis and prognosis prediction using a deep-learning model and label-free 3D holotomography. It combines a conceptual CNS infection visualization, a holotomography device, and immune cell images from cerebrospinal fluid (CSF). Their model analyzes CSF immune cell morphology to differentiate infection etiology and predict outcomes. This rapid, non-invasive approach enhances CNS infection diagnostics, improving patient care.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.70005","citationCount":"0","resultStr":"{\"title\":\"Deep-Learning Model for Central Nervous System Infection Diagnosis and Prognosis Using Label-Free 3D Immune-Cell Morphology in the Cerebrospinal Fluid\",\"authors\":\"Bo Kyu Choi, Ho Heon Yang, Jong Hyun Kim, JaeSeong Hong, Kyung Min Kim, Yu Rang Park\",\"doi\":\"10.1002/aisy.70005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Deep-Learning Model for Central Nervous SystemInfection Diagnosis</b>\\n </p><p>In article number 2401145, Kyung Min Kim, Yu Rang Park, and co-workers describe their study on central nervous system (CNS) infection diagnosis and prognosis prediction using a deep-learning model and label-free 3D holotomography. It combines a conceptual CNS infection visualization, a holotomography device, and immune cell images from cerebrospinal fluid (CSF). Their model analyzes CSF immune cell morphology to differentiate infection etiology and predict outcomes. This rapid, non-invasive approach enhances CNS infection diagnostics, improving patient care.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.70005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.70005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
在文章编号2401145中,Kyung Min Kim, Yu Rang Park及其同事描述了他们使用深度学习模型和无标签3D全息摄影技术对中枢神经系统(CNS)感染诊断和预后预测的研究。它结合了概念性中枢神经系统感染可视化、全息断层扫描设备和脑脊液(CSF)免疫细胞图像。他们的模型分析脑脊液免疫细胞形态以区分感染病因并预测结果。这种快速、无创的方法增强了中枢神经系统感染的诊断,改善了患者的护理。
Deep-Learning Model for Central Nervous System Infection Diagnosis and Prognosis Using Label-Free 3D Immune-Cell Morphology in the Cerebrospinal Fluid
Deep-Learning Model for Central Nervous SystemInfection Diagnosis
In article number 2401145, Kyung Min Kim, Yu Rang Park, and co-workers describe their study on central nervous system (CNS) infection diagnosis and prognosis prediction using a deep-learning model and label-free 3D holotomography. It combines a conceptual CNS infection visualization, a holotomography device, and immune cell images from cerebrospinal fluid (CSF). Their model analyzes CSF immune cell morphology to differentiate infection etiology and predict outcomes. This rapid, non-invasive approach enhances CNS infection diagnostics, improving patient care.