一个分散的匹配理论框架来匹配数据和算法提供者

Chaouki Ben Issaid;Mehdi Bennis
{"title":"一个分散的匹配理论框架来匹配数据和算法提供者","authors":"Chaouki Ben Issaid;Mehdi Bennis","doi":"10.1109/LNET.2025.3560459","DOIUrl":null,"url":null,"abstract":"This letter presents a novel decentralized matching algorithm (DEMA) for pairing data and algorithm providers in AI ecosystems. DEMA addresses scalability, stability, and matching utility challenges in large-scale environments. Formulated as a two-sided matching game, our decentralized solution enables autonomous decision-making based on local information. Simulations demonstrate DEMA‘s near-optimal matching quality and almost perfect stability. Furthermore, DEMA exhibits excellent scalability with execution times and memory usage growing much more slowly than centralized matching as the number of providers increases.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"7 2","pages":"140-144"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10964373","citationCount":"0","resultStr":"{\"title\":\"A Decentralized Matching Theory Framework to Match Data and Algorithms Providers\",\"authors\":\"Chaouki Ben Issaid;Mehdi Bennis\",\"doi\":\"10.1109/LNET.2025.3560459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a novel decentralized matching algorithm (DEMA) for pairing data and algorithm providers in AI ecosystems. DEMA addresses scalability, stability, and matching utility challenges in large-scale environments. Formulated as a two-sided matching game, our decentralized solution enables autonomous decision-making based on local information. Simulations demonstrate DEMA‘s near-optimal matching quality and almost perfect stability. Furthermore, DEMA exhibits excellent scalability with execution times and memory usage growing much more slowly than centralized matching as the number of providers increases.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"7 2\",\"pages\":\"140-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10964373\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10964373/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10964373/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这封信提出了一种新的分散匹配算法(DEMA),用于在人工智能生态系统中配对数据和算法提供者。DEMA解决了大规模环境中的可扩展性、稳定性和匹配实用程序挑战。作为一个双边匹配博弈,我们的分散式解决方案可以基于本地信息进行自主决策。仿真证明了DEMA近乎最佳的匹配质量和近乎完美的稳定性。此外,随着提供者数量的增加,与集中式匹配相比,DEMA表现出出色的可伸缩性,其执行时间和内存使用的增长速度要慢得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Decentralized Matching Theory Framework to Match Data and Algorithms Providers
This letter presents a novel decentralized matching algorithm (DEMA) for pairing data and algorithm providers in AI ecosystems. DEMA addresses scalability, stability, and matching utility challenges in large-scale environments. Formulated as a two-sided matching game, our decentralized solution enables autonomous decision-making based on local information. Simulations demonstrate DEMA‘s near-optimal matching quality and almost perfect stability. Furthermore, DEMA exhibits excellent scalability with execution times and memory usage growing much more slowly than centralized matching as the number of providers increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信