后量子安全基于区块链的医疗保健分析联邦学习框架

Daniel Commey;Sena G. Hounsinou;Garth V. Crosby
{"title":"后量子安全基于区块链的医疗保健分析联邦学习框架","authors":"Daniel Commey;Sena G. Hounsinou;Garth V. Crosby","doi":"10.1109/LNET.2025.3563434","DOIUrl":null,"url":null,"abstract":"The growth of IoT in healthcare generates massive sensitive data. This necessitates a secure and privacy-preserving distributed network to transport and process the data. Federated learning (FL) offers privacy-preserving model training, while blockchain ensures data integrity through transparency and immutability. Yet, quantum computing threatens cryptographic schemes like ECDSA, endangering long-term data confidentiality. This paper integrates post-quantum cryptography (PQC) with blockchain-based FL for healthcare analytics. We evaluate three signature-based PQC algorithms—Falcon, Dilithium (ML-DSA-65), and SPHINCS+ (SPHINCS+-SHA2-128s)—to assess their impact on blockchain transaction costs and latency. Benchmarks on a local Ethereum testnet show that lattice-based schemes, particularly ML-DSA-65, achieve verification under 10 ms with acceptable gas costs. Our findings indicate that smart contract signature verification is the primary gas consumer, offering guidelines for deploying quantum-resistant FL systems. These findings justify and potentially create a foundation for building complete systems that integrate PQC into Blockchain-based FL systems.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"7 2","pages":"126-129"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-Quantum Secure Blockchain-Based Federated Learning Framework for Healthcare Analytics\",\"authors\":\"Daniel Commey;Sena G. Hounsinou;Garth V. Crosby\",\"doi\":\"10.1109/LNET.2025.3563434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth of IoT in healthcare generates massive sensitive data. This necessitates a secure and privacy-preserving distributed network to transport and process the data. Federated learning (FL) offers privacy-preserving model training, while blockchain ensures data integrity through transparency and immutability. Yet, quantum computing threatens cryptographic schemes like ECDSA, endangering long-term data confidentiality. This paper integrates post-quantum cryptography (PQC) with blockchain-based FL for healthcare analytics. We evaluate three signature-based PQC algorithms—Falcon, Dilithium (ML-DSA-65), and SPHINCS+ (SPHINCS+-SHA2-128s)—to assess their impact on blockchain transaction costs and latency. Benchmarks on a local Ethereum testnet show that lattice-based schemes, particularly ML-DSA-65, achieve verification under 10 ms with acceptable gas costs. Our findings indicate that smart contract signature verification is the primary gas consumer, offering guidelines for deploying quantum-resistant FL systems. These findings justify and potentially create a foundation for building complete systems that integrate PQC into Blockchain-based FL systems.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"7 2\",\"pages\":\"126-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10973102/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10973102/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网在医疗保健领域的发展产生了大量敏感数据。这就需要一个安全且保护隐私的分布式网络来传输和处理数据。联邦学习(FL)提供保护隐私的模型训练,而区块链通过透明性和不变性确保数据完整性。然而,量子计算威胁到ECDSA等加密方案,危及长期数据机密性。本文将后量子密码学(PQC)与基于区块链的FL集成到医疗保健分析中。我们评估了三种基于签名的PQC算法——falcon、Dilithium (ML-DSA-65)和SPHINCS+ (SPHINCS+-SHA2-128s)——以评估它们对区块链交易成本和延迟的影响。在本地以太坊测试网络上的基准测试表明,基于格子的方案,特别是ML-DSA-65,在10毫秒内以可接受的gas成本实现验证。我们的研究结果表明,智能合约签名验证是主要的天然气消费者,为部署抗量子FL系统提供了指导方针。这些发现证明并可能为构建将PQC集成到基于区块链的FL系统的完整系统奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Post-Quantum Secure Blockchain-Based Federated Learning Framework for Healthcare Analytics
The growth of IoT in healthcare generates massive sensitive data. This necessitates a secure and privacy-preserving distributed network to transport and process the data. Federated learning (FL) offers privacy-preserving model training, while blockchain ensures data integrity through transparency and immutability. Yet, quantum computing threatens cryptographic schemes like ECDSA, endangering long-term data confidentiality. This paper integrates post-quantum cryptography (PQC) with blockchain-based FL for healthcare analytics. We evaluate three signature-based PQC algorithms—Falcon, Dilithium (ML-DSA-65), and SPHINCS+ (SPHINCS+-SHA2-128s)—to assess their impact on blockchain transaction costs and latency. Benchmarks on a local Ethereum testnet show that lattice-based schemes, particularly ML-DSA-65, achieve verification under 10 ms with acceptable gas costs. Our findings indicate that smart contract signature verification is the primary gas consumer, offering guidelines for deploying quantum-resistant FL systems. These findings justify and potentially create a foundation for building complete systems that integrate PQC into Blockchain-based FL systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信