高斯多址窃听信道中的安全通信:一种深度学习和友好干扰方法

Sankalp;Lata;Gaurang Sondur;Mahendra K. Shukla;Om Jee Pandey;Maxime Guillaud
{"title":"高斯多址窃听信道中的安全通信:一种深度学习和友好干扰方法","authors":"Sankalp;Lata;Gaurang Sondur;Mahendra K. Shukla;Om Jee Pandey;Maxime Guillaud","doi":"10.1109/LNET.2025.3566243","DOIUrl":null,"url":null,"abstract":"The use of deep learning (DL) in communication systems shows great promise, particularly through DL-based physical-layer techniques with autoencoders (AEs) for end-to-end learning. This letter presents an AE-based DL framework to enhance physical-layer security in scenarios where multiple transmitters communicate with the receiver under eavesdropping threats, specifically within a Gaussian multiple-access wiretap channel. A key feature is a friendly jammer that emits a high-power Gaussian signal to disrupt eavesdroppers. The proposed framework is particularly relevant for security-critical applications such as wireless health monitoring systems, where safeguarding sensitive data is paramount. We assess secrecy performance by analyzing the symbol error rate among users in the presence of both an eavesdropper and a jammer. Simulation results show that our DL-based Gaussian jamming strategy significantly improves secrecy performance, effectively safeguarding communications from eavesdropping. This letter highlights the potential of DL techniques to enhance communication security in complex multi-user environments.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"7 2","pages":"78-82"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure Communication in Gaussian Multiple Access Wiretap Channels: A Deep Learning and Friendly Jamming Approach\",\"authors\":\"Sankalp;Lata;Gaurang Sondur;Mahendra K. Shukla;Om Jee Pandey;Maxime Guillaud\",\"doi\":\"10.1109/LNET.2025.3566243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of deep learning (DL) in communication systems shows great promise, particularly through DL-based physical-layer techniques with autoencoders (AEs) for end-to-end learning. This letter presents an AE-based DL framework to enhance physical-layer security in scenarios where multiple transmitters communicate with the receiver under eavesdropping threats, specifically within a Gaussian multiple-access wiretap channel. A key feature is a friendly jammer that emits a high-power Gaussian signal to disrupt eavesdroppers. The proposed framework is particularly relevant for security-critical applications such as wireless health monitoring systems, where safeguarding sensitive data is paramount. We assess secrecy performance by analyzing the symbol error rate among users in the presence of both an eavesdropper and a jammer. Simulation results show that our DL-based Gaussian jamming strategy significantly improves secrecy performance, effectively safeguarding communications from eavesdropping. This letter highlights the potential of DL techniques to enhance communication security in complex multi-user environments.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"7 2\",\"pages\":\"78-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10981843/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10981843/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在通信系统中使用深度学习(DL)显示出巨大的前景,特别是通过基于深度学习的物理层技术和端到端自动编码器(ae)进行学习。这封信提出了一个基于ae的DL框架,以增强在窃听威胁下多个发射器与接收器通信的场景中的物理层安全性,特别是在高斯多址窃听信道中。一个关键的特点是一个友好的干扰器,它发出一个高功率高斯信号来干扰窃听者。提议的框架特别适用于安全关键型应用,如无线健康监测系统,在这些应用中,保护敏感数据至关重要。我们通过分析在窃听者和干扰者存在的情况下用户之间的符号错误率来评估保密性能。仿真结果表明,基于dl的高斯干扰策略显著提高了保密性能,有效地保护了通信不被窃听。这封信强调了DL技术在复杂的多用户环境中增强通信安全的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secure Communication in Gaussian Multiple Access Wiretap Channels: A Deep Learning and Friendly Jamming Approach
The use of deep learning (DL) in communication systems shows great promise, particularly through DL-based physical-layer techniques with autoencoders (AEs) for end-to-end learning. This letter presents an AE-based DL framework to enhance physical-layer security in scenarios where multiple transmitters communicate with the receiver under eavesdropping threats, specifically within a Gaussian multiple-access wiretap channel. A key feature is a friendly jammer that emits a high-power Gaussian signal to disrupt eavesdroppers. The proposed framework is particularly relevant for security-critical applications such as wireless health monitoring systems, where safeguarding sensitive data is paramount. We assess secrecy performance by analyzing the symbol error rate among users in the presence of both an eavesdropper and a jammer. Simulation results show that our DL-based Gaussian jamming strategy significantly improves secrecy performance, effectively safeguarding communications from eavesdropping. This letter highlights the potential of DL techniques to enhance communication security in complex multi-user environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信