Alexandre Gemayel;Dimitrios Michael Manias;Abdallah Shami
{"title":"基于机器学习的无人机状态监测网络资源优化与振动分析","authors":"Alexandre Gemayel;Dimitrios Michael Manias;Abdallah Shami","doi":"10.1109/LNET.2025.3545286","DOIUrl":null,"url":null,"abstract":"As smart cities begin to materialize, the role of Unmanned Aerial Vehicles (UAVs) and their reliability becomes increasingly important. One aspect of reliability relates to Condition Monitoring (CM), where Machine Learning (ML) models are leveraged to identify abnormal and adverse conditions. Given the resource-constrained nature of next-generation edge networks, the utilization of precious network resources must be minimized. This letter explores the optimization of network resources for ML-based UAV CM frameworks. The developed framework uses experimental data and varies the feature extraction aggregation interval to optimize ML model selection. Additionally, by leveraging dimensionality reduction techniques, there is a 99.9% reduction in network resource consumption.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"7 2","pages":"108-112"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network Resource Optimization for ML-Based UAV Condition Monitoring With Vibration Analysis\",\"authors\":\"Alexandre Gemayel;Dimitrios Michael Manias;Abdallah Shami\",\"doi\":\"10.1109/LNET.2025.3545286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As smart cities begin to materialize, the role of Unmanned Aerial Vehicles (UAVs) and their reliability becomes increasingly important. One aspect of reliability relates to Condition Monitoring (CM), where Machine Learning (ML) models are leveraged to identify abnormal and adverse conditions. Given the resource-constrained nature of next-generation edge networks, the utilization of precious network resources must be minimized. This letter explores the optimization of network resources for ML-based UAV CM frameworks. The developed framework uses experimental data and varies the feature extraction aggregation interval to optimize ML model selection. Additionally, by leveraging dimensionality reduction techniques, there is a 99.9% reduction in network resource consumption.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"7 2\",\"pages\":\"108-112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10902050/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10902050/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Network Resource Optimization for ML-Based UAV Condition Monitoring With Vibration Analysis
As smart cities begin to materialize, the role of Unmanned Aerial Vehicles (UAVs) and their reliability becomes increasingly important. One aspect of reliability relates to Condition Monitoring (CM), where Machine Learning (ML) models are leveraged to identify abnormal and adverse conditions. Given the resource-constrained nature of next-generation edge networks, the utilization of precious network resources must be minimized. This letter explores the optimization of network resources for ML-based UAV CM frameworks. The developed framework uses experimental data and varies the feature extraction aggregation interval to optimize ML model selection. Additionally, by leveraging dimensionality reduction techniques, there is a 99.9% reduction in network resource consumption.