作为叙事计划搜索指南的大型语言模型

IF 2.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rachelyn Farrell;Stephen G. Ware
{"title":"作为叙事计划搜索指南的大型语言模型","authors":"Rachelyn Farrell;Stephen G. Ware","doi":"10.1109/TG.2024.3487416","DOIUrl":null,"url":null,"abstract":"Symbolic planning algorithms and large language models have different strengths and weaknesses for story generation, suggesting hybrid models might leverage advantages from both. Others have proposed using a language model in combination with a partial order planning style algorithm to avoid the need for a hand-written symbolic domain of actions, or generating these domains from natural language input. This article offers a complementary approach. We propose to use a state space planning algorithm to plan coherent multiagent stories using hand-written symbolic domains, but with a language model acting as a guide to estimate, which events are worth exploring first. We present an initial evaluation of this approach on a set of benchmark narrative planning problems.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"17 2","pages":"419-428"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Language Models as Narrative Planning Search Guides\",\"authors\":\"Rachelyn Farrell;Stephen G. Ware\",\"doi\":\"10.1109/TG.2024.3487416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symbolic planning algorithms and large language models have different strengths and weaknesses for story generation, suggesting hybrid models might leverage advantages from both. Others have proposed using a language model in combination with a partial order planning style algorithm to avoid the need for a hand-written symbolic domain of actions, or generating these domains from natural language input. This article offers a complementary approach. We propose to use a state space planning algorithm to plan coherent multiagent stories using hand-written symbolic domains, but with a language model acting as a guide to estimate, which events are worth exploring first. We present an initial evaluation of this approach on a set of benchmark narrative planning problems.\",\"PeriodicalId\":55977,\"journal\":{\"name\":\"IEEE Transactions on Games\",\"volume\":\"17 2\",\"pages\":\"419-428\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Games\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10737423/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10737423/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

符号规划算法和大型语言模型在故事生成方面有不同的优缺点,这表明混合模型可以利用两者的优势。其他人则建议使用语言模型与部分顺序规划风格算法相结合,以避免需要手写的动作符号域,或从自然语言输入生成这些域。本文提供了一种补充方法。我们建议使用状态空间规划算法来使用手写的符号域来规划连贯的多智能体故事,但使用语言模型作为估计哪些事件值得首先探索的指南。我们在一组基准叙事规划问题上对这种方法进行了初步评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Language Models as Narrative Planning Search Guides
Symbolic planning algorithms and large language models have different strengths and weaknesses for story generation, suggesting hybrid models might leverage advantages from both. Others have proposed using a language model in combination with a partial order planning style algorithm to avoid the need for a hand-written symbolic domain of actions, or generating these domains from natural language input. This article offers a complementary approach. We propose to use a state space planning algorithm to plan coherent multiagent stories using hand-written symbolic domains, but with a language model acting as a guide to estimate, which events are worth exploring first. We present an initial evaluation of this approach on a set of benchmark narrative planning problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信