基于射频能量收集的aoi感知无人机辅助网络的深度强化学习

Gaurav Kumar Pandey;Devendra Singh Gurjar;Suneel Yadav;Xingwang Li
{"title":"基于射频能量收集的aoi感知无人机辅助网络的深度强化学习","authors":"Gaurav Kumar Pandey;Devendra Singh Gurjar;Suneel Yadav;Xingwang Li","doi":"10.1109/LNET.2025.3550931","DOIUrl":null,"url":null,"abstract":"This letter considers UAV-assisted data collection from energy-constrained Internet of Things (IoT) devices. Herein, a UAV utilizes radio frequency-based wireless power transfer technique to charge multiple IoT devices or schedules one IoT device to transmit its sensed data. Using the harvested energy, the IoT devices share the collected data with the UAV as per their schedule. For this setup, we aim to minimize IoT devices’ average Age of Information (AoI) by optimally controlling the UAV’s trajectory and scheduling of IoT devices while adhering to the energy consumption limitations of UAV and IoT devices. Considering the dynamic scenario for the considered network, the optimization problem is modeled as a Markov Decision Process and solved through dueling double deep Q-networks (D3QN) algorithm. The simulation results show that the proposed framework outperforms the baseline methods in reducing the average AoI of the IoT devices.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"7 2","pages":"88-92"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Reinforcement Learning for AoI-Aware UAV-Assisted Networks With RF Energy Harvesting\",\"authors\":\"Gaurav Kumar Pandey;Devendra Singh Gurjar;Suneel Yadav;Xingwang Li\",\"doi\":\"10.1109/LNET.2025.3550931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter considers UAV-assisted data collection from energy-constrained Internet of Things (IoT) devices. Herein, a UAV utilizes radio frequency-based wireless power transfer technique to charge multiple IoT devices or schedules one IoT device to transmit its sensed data. Using the harvested energy, the IoT devices share the collected data with the UAV as per their schedule. For this setup, we aim to minimize IoT devices’ average Age of Information (AoI) by optimally controlling the UAV’s trajectory and scheduling of IoT devices while adhering to the energy consumption limitations of UAV and IoT devices. Considering the dynamic scenario for the considered network, the optimization problem is modeled as a Markov Decision Process and solved through dueling double deep Q-networks (D3QN) algorithm. The simulation results show that the proposed framework outperforms the baseline methods in reducing the average AoI of the IoT devices.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"7 2\",\"pages\":\"88-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10925373/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10925373/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这封信考虑了无人机从能源受限的物联网(IoT)设备中辅助收集数据。在此,无人机利用基于射频的无线电力传输技术为多个物联网设备充电或调度一个物联网设备传输其感测数据。利用收集到的能量,物联网设备按照其时间表与无人机共享收集到的数据。在此设置中,我们的目标是在遵守无人机和物联网设备能耗限制的同时,通过优化控制无人机的轨迹和物联网设备的调度,最小化物联网设备的平均信息年龄(AoI)。考虑到所考虑网络的动态场景,将优化问题建模为马尔可夫决策过程,并通过双深度q网络(D3QN)算法求解。仿真结果表明,该框架在降低物联网设备的平均AoI方面优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Reinforcement Learning for AoI-Aware UAV-Assisted Networks With RF Energy Harvesting
This letter considers UAV-assisted data collection from energy-constrained Internet of Things (IoT) devices. Herein, a UAV utilizes radio frequency-based wireless power transfer technique to charge multiple IoT devices or schedules one IoT device to transmit its sensed data. Using the harvested energy, the IoT devices share the collected data with the UAV as per their schedule. For this setup, we aim to minimize IoT devices’ average Age of Information (AoI) by optimally controlling the UAV’s trajectory and scheduling of IoT devices while adhering to the energy consumption limitations of UAV and IoT devices. Considering the dynamic scenario for the considered network, the optimization problem is modeled as a Markov Decision Process and solved through dueling double deep Q-networks (D3QN) algorithm. The simulation results show that the proposed framework outperforms the baseline methods in reducing the average AoI of the IoT devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信