{"title":"通过控制势垒函数限制动能:分析与实验验证","authors":"Federico Califano;Daniël Logmans;Wesley Roozing","doi":"10.1109/LRA.2025.3578847","DOIUrl":null,"url":null,"abstract":"In the context of safety-critical control, we propose and analyse the use of Control Barrier Functions (CBFs) to limit the kinetic energy of torque-controlled robots. The proposed scheme is able to modify a nominal control action in a minimally invasive manner to achieve the desired kinetic energy limit. We show how this safety condition is achieved by appropriately injecting damping in the underlying robot dynamics independently of the nominal controller structure. We present an extensive experimental validation of the approach on a 7-Degree of Freedom (DoF) Franka Emika Panda robot. The results demonstrate that this approach provides an effective, minimally invasive safety layer that is straightforward to implement and is robust in real experiments.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 7","pages":"7595-7602"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limiting Kinetic Energy Through Control Barrier Functions: Analysis and Experimental Validation\",\"authors\":\"Federico Califano;Daniël Logmans;Wesley Roozing\",\"doi\":\"10.1109/LRA.2025.3578847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of safety-critical control, we propose and analyse the use of Control Barrier Functions (CBFs) to limit the kinetic energy of torque-controlled robots. The proposed scheme is able to modify a nominal control action in a minimally invasive manner to achieve the desired kinetic energy limit. We show how this safety condition is achieved by appropriately injecting damping in the underlying robot dynamics independently of the nominal controller structure. We present an extensive experimental validation of the approach on a 7-Degree of Freedom (DoF) Franka Emika Panda robot. The results demonstrate that this approach provides an effective, minimally invasive safety layer that is straightforward to implement and is robust in real experiments.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 7\",\"pages\":\"7595-7602\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11030294/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11030294/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Limiting Kinetic Energy Through Control Barrier Functions: Analysis and Experimental Validation
In the context of safety-critical control, we propose and analyse the use of Control Barrier Functions (CBFs) to limit the kinetic energy of torque-controlled robots. The proposed scheme is able to modify a nominal control action in a minimally invasive manner to achieve the desired kinetic energy limit. We show how this safety condition is achieved by appropriately injecting damping in the underlying robot dynamics independently of the nominal controller structure. We present an extensive experimental validation of the approach on a 7-Degree of Freedom (DoF) Franka Emika Panda robot. The results demonstrate that this approach provides an effective, minimally invasive safety layer that is straightforward to implement and is robust in real experiments.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.