基于多臂强盗选择的数独遗传算法

IF 2.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jon-Lark Kim;Eunjee Eor
{"title":"基于多臂强盗选择的数独遗传算法","authors":"Jon-Lark Kim;Eunjee Eor","doi":"10.1109/TG.2024.3487861","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a genetic algorithm-based upper confidence bound (GA-UCB), an innovative hybrid genetic algorithm integrating multiarmed bandit. It effectively addresses the challenges of solving large and intricate <italic>Sudoku</i> puzzles, thus overcoming the constraints of traditional genetic algorithms. In GA-UCB, reinforcement learning is applied to simulate parent selection and crossover. By learning the optimal parent selection within a given population, the population evolves. Based on this technology, GA-UCB demonstrates improved results in solving complex <italic>Sudoku</i> puzzles. GA-UCB is compared with several state-of-the-art algorithms on <italic>Sudoku</i> puzzles of different difficulty levels and shows a 55% improvement in convergence speed compared to previous research results, particularly in the most challenging instance among the six <italic>Sudoku</i> puzzle instances tested.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"17 2","pages":"429-441"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Genetic Algorithm for Solving Sudoku Based on Multiarmed Bandit Selection\",\"authors\":\"Jon-Lark Kim;Eunjee Eor\",\"doi\":\"10.1109/TG.2024.3487861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce a genetic algorithm-based upper confidence bound (GA-UCB), an innovative hybrid genetic algorithm integrating multiarmed bandit. It effectively addresses the challenges of solving large and intricate <italic>Sudoku</i> puzzles, thus overcoming the constraints of traditional genetic algorithms. In GA-UCB, reinforcement learning is applied to simulate parent selection and crossover. By learning the optimal parent selection within a given population, the population evolves. Based on this technology, GA-UCB demonstrates improved results in solving complex <italic>Sudoku</i> puzzles. GA-UCB is compared with several state-of-the-art algorithms on <italic>Sudoku</i> puzzles of different difficulty levels and shows a 55% improvement in convergence speed compared to previous research results, particularly in the most challenging instance among the six <italic>Sudoku</i> puzzle instances tested.\",\"PeriodicalId\":55977,\"journal\":{\"name\":\"IEEE Transactions on Games\",\"volume\":\"17 2\",\"pages\":\"429-441\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Games\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10737894/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10737894/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于遗传算法的上置信度界(GA-UCB)算法,这是一种集成多臂强盗的新型混合遗传算法。它有效地解决了解决大型和复杂的数独难题的挑战,从而克服了传统遗传算法的限制。在GA-UCB中,采用强化学习模拟亲本选择和交叉。通过在给定种群中学习最优的亲本选择,种群得以进化。基于该技术,GA-UCB在解决复杂数独难题方面表现出了改进的结果。GA-UCB在不同难度的数独问题上与几种最先进的算法进行了比较,结果表明,与之前的研究结果相比,GA-UCB的收敛速度提高了55%,特别是在测试的六个数独问题实例中最具挑战性的实例中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Genetic Algorithm for Solving Sudoku Based on Multiarmed Bandit Selection
In this article, we introduce a genetic algorithm-based upper confidence bound (GA-UCB), an innovative hybrid genetic algorithm integrating multiarmed bandit. It effectively addresses the challenges of solving large and intricate Sudoku puzzles, thus overcoming the constraints of traditional genetic algorithms. In GA-UCB, reinforcement learning is applied to simulate parent selection and crossover. By learning the optimal parent selection within a given population, the population evolves. Based on this technology, GA-UCB demonstrates improved results in solving complex Sudoku puzzles. GA-UCB is compared with several state-of-the-art algorithms on Sudoku puzzles of different difficulty levels and shows a 55% improvement in convergence speed compared to previous research results, particularly in the most challenging instance among the six Sudoku puzzle instances tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信