通过序数网络探索加密货币价格动态和可预测性

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Oday Masoudi , Alessandro Mazzoccoli , Pierluigi Vellucci
{"title":"通过序数网络探索加密货币价格动态和可预测性","authors":"Oday Masoudi ,&nbsp;Alessandro Mazzoccoli ,&nbsp;Pierluigi Vellucci","doi":"10.1016/j.physa.2025.130752","DOIUrl":null,"url":null,"abstract":"<div><div>Ordinal networks represent an innovative and versatile approach for time series analysis, enabling the transformation of data sequences into complex networks based on the relative order of values. This method provides a fresh perspective on uncovering the internal structure of the data, allowing the identification of recurring patterns and predictability dynamics. In our study, we employ ordinal networks and permutation entropy to analyze the predictability and evolving dynamics of four cryptocurrencies: Bitcoin, Ethereum, Litecoin, and Dogecoin. By leveraging this methodology, we investigate the temporal relationships and ordinal transitions that characterize the price fluctuations and volatility of each cryptocurrency, offering deeper insights into their dynamic complexity and predictive potential in cryptocurrency markets.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"674 ","pages":"Article 130752"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring cryptocurrency price dynamics and predictability with ordinal networks\",\"authors\":\"Oday Masoudi ,&nbsp;Alessandro Mazzoccoli ,&nbsp;Pierluigi Vellucci\",\"doi\":\"10.1016/j.physa.2025.130752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ordinal networks represent an innovative and versatile approach for time series analysis, enabling the transformation of data sequences into complex networks based on the relative order of values. This method provides a fresh perspective on uncovering the internal structure of the data, allowing the identification of recurring patterns and predictability dynamics. In our study, we employ ordinal networks and permutation entropy to analyze the predictability and evolving dynamics of four cryptocurrencies: Bitcoin, Ethereum, Litecoin, and Dogecoin. By leveraging this methodology, we investigate the temporal relationships and ordinal transitions that characterize the price fluctuations and volatility of each cryptocurrency, offering deeper insights into their dynamic complexity and predictive potential in cryptocurrency markets.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"674 \",\"pages\":\"Article 130752\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437125004042\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125004042","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有序网络代表了时间序列分析的一种创新和通用的方法,能够将数据序列转换为基于值的相对顺序的复杂网络。这种方法为揭示数据的内部结构提供了新的视角,允许识别重复模式和可预测性动态。在我们的研究中,我们使用有序网络和排列熵来分析四种加密货币的可预测性和演变动态:比特币、以太坊、莱特币和狗狗币。通过利用这种方法,我们研究了表征每种加密货币价格波动和波动性的时间关系和顺序转换,从而更深入地了解了它们在加密货币市场中的动态复杂性和预测潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring cryptocurrency price dynamics and predictability with ordinal networks
Ordinal networks represent an innovative and versatile approach for time series analysis, enabling the transformation of data sequences into complex networks based on the relative order of values. This method provides a fresh perspective on uncovering the internal structure of the data, allowing the identification of recurring patterns and predictability dynamics. In our study, we employ ordinal networks and permutation entropy to analyze the predictability and evolving dynamics of four cryptocurrencies: Bitcoin, Ethereum, Litecoin, and Dogecoin. By leveraging this methodology, we investigate the temporal relationships and ordinal transitions that characterize the price fluctuations and volatility of each cryptocurrency, offering deeper insights into their dynamic complexity and predictive potential in cryptocurrency markets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信