{"title":"用于抗真菌治疗的3d打印透皮微针贴片的进展:现状和挑战","authors":"Sarang Sunil Mahamuni , Madhuri Mahesh Desai , Koustubh Mansing Thorawades , Durgacharan A. Bhagwat","doi":"10.1016/j.coph.2025.102545","DOIUrl":null,"url":null,"abstract":"<div><div>Skin fungal infection and systemic fungal infections are highly prevalent, causing significant healthcare burden. Addressing the pervasive and sometimes life-threatening nature of fungal infections has spurred extensive research into novel therapeutic strategies, particularly focusing on effective drug formulations and innovative delivery routes. Among this transdermal drug delivery (TDD) using microneedles (MNs) is a promising approach. 3D-printed MN patches are composed of arrays of tiny, needle-like structures engineered to facilitate the delivery of therapeutic agents by breaching the stratum corneum. Using the precision of 3D printing and improved drug delivery of MNs, 3D-printed transdermal MNs present a promising approach to manage fungal infections. This review provides a comprehensive analysis of recent literature on the use of 3D-printed MNs for antifungal therapy, emphasizing advancements in fabrication methods, drug incorporation techniques, and preclinical assessment outcomes. Furthermore, the study informs on various novel innovations employing antifungal agent administered through transdermal patches, demonstrating their efficacy and superiority over traditional methods. The majority of the studies are <em>in vitro</em> experimental studies, highlighting the need for human trials to translate 3D-printed MN-based TDD into clinical practice. The findings highlight the promise of 3D-printed microneedle patches in transforming transdermal antifungal therapy; however, extensive clinical validation remains crucial for regulatory endorsement and practical implementation.</div></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"83 ","pages":"Article 102545"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in 3D-printed transdermal microneedle patches for antifungal therapy: Current scenario and challenges\",\"authors\":\"Sarang Sunil Mahamuni , Madhuri Mahesh Desai , Koustubh Mansing Thorawades , Durgacharan A. Bhagwat\",\"doi\":\"10.1016/j.coph.2025.102545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Skin fungal infection and systemic fungal infections are highly prevalent, causing significant healthcare burden. Addressing the pervasive and sometimes life-threatening nature of fungal infections has spurred extensive research into novel therapeutic strategies, particularly focusing on effective drug formulations and innovative delivery routes. Among this transdermal drug delivery (TDD) using microneedles (MNs) is a promising approach. 3D-printed MN patches are composed of arrays of tiny, needle-like structures engineered to facilitate the delivery of therapeutic agents by breaching the stratum corneum. Using the precision of 3D printing and improved drug delivery of MNs, 3D-printed transdermal MNs present a promising approach to manage fungal infections. This review provides a comprehensive analysis of recent literature on the use of 3D-printed MNs for antifungal therapy, emphasizing advancements in fabrication methods, drug incorporation techniques, and preclinical assessment outcomes. Furthermore, the study informs on various novel innovations employing antifungal agent administered through transdermal patches, demonstrating their efficacy and superiority over traditional methods. The majority of the studies are <em>in vitro</em> experimental studies, highlighting the need for human trials to translate 3D-printed MN-based TDD into clinical practice. The findings highlight the promise of 3D-printed microneedle patches in transforming transdermal antifungal therapy; however, extensive clinical validation remains crucial for regulatory endorsement and practical implementation.</div></div>\",\"PeriodicalId\":50603,\"journal\":{\"name\":\"Current Opinion in Pharmacology\",\"volume\":\"83 \",\"pages\":\"Article 102545\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1471489225000414\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1471489225000414","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Advances in 3D-printed transdermal microneedle patches for antifungal therapy: Current scenario and challenges
Skin fungal infection and systemic fungal infections are highly prevalent, causing significant healthcare burden. Addressing the pervasive and sometimes life-threatening nature of fungal infections has spurred extensive research into novel therapeutic strategies, particularly focusing on effective drug formulations and innovative delivery routes. Among this transdermal drug delivery (TDD) using microneedles (MNs) is a promising approach. 3D-printed MN patches are composed of arrays of tiny, needle-like structures engineered to facilitate the delivery of therapeutic agents by breaching the stratum corneum. Using the precision of 3D printing and improved drug delivery of MNs, 3D-printed transdermal MNs present a promising approach to manage fungal infections. This review provides a comprehensive analysis of recent literature on the use of 3D-printed MNs for antifungal therapy, emphasizing advancements in fabrication methods, drug incorporation techniques, and preclinical assessment outcomes. Furthermore, the study informs on various novel innovations employing antifungal agent administered through transdermal patches, demonstrating their efficacy and superiority over traditional methods. The majority of the studies are in vitro experimental studies, highlighting the need for human trials to translate 3D-printed MN-based TDD into clinical practice. The findings highlight the promise of 3D-printed microneedle patches in transforming transdermal antifungal therapy; however, extensive clinical validation remains crucial for regulatory endorsement and practical implementation.
期刊介绍:
Current Opinion in Pharmacology (COPHAR) publishes authoritative, comprehensive, and systematic reviews. COPHAR helps specialists keep up to date with a clear and readable synthesis on current advances in pharmacology and drug discovery. Expert authors annotate the most interesting papers from the expanding volume of information published today, saving valuable time and giving the reader insight on areas of importance.