Sebastian Schaffer , Thomas Schrefl , Harald Oezelt , Norbert J. Mauser , Lukas Exl
{"title":"微磁能最小化的物理感知机器学习:最新算法发展","authors":"Sebastian Schaffer , Thomas Schrefl , Harald Oezelt , Norbert J. Mauser , Lukas Exl","doi":"10.1016/j.cpc.2025.109719","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we explore advanced machine learning techniques for minimizing Gibbs free energy in full 3D micromagnetic simulations. Building on Brown's bounds for magnetostatic self-energy, we revisit their application in the context of variational formulations of the transmission problems for the scalar and vector potential. To overcome the computational challenges posed by whole-space integrals, we reformulate these bounds on a finite domain, making the method more efficient and scalable for numerical simulation. Our approach utilizes an alternating optimization scheme for joint minimization of Brown's energy bounds and the Gibbs free energy. The Cayley transform is employed to rigorously enforce the unit norm constraint, while <em>R</em>-functions are used to impose essential boundary conditions in the computation of magnetostatic fields. Our results highlight the potential of mesh-free Physics-Informed Neural Networks (PINNs) and Extreme Learning Machines (ELMs) when integrated with hard constraints, providing highly accurate approximations. These methods exhibit competitive performance compared to traditional numerical approaches, showing significant promise in computing magnetostatic fields and the application for energy minimization, such as the computation of hysteresis curves. This work opens the path for future directions of research on more complex geometries, such as grain structure models, and the application to large scale problem settings which are intractable with traditional numerical methods.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"315 ","pages":"Article 109719"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics aware machine learning for micromagnetic energy minimization: Recent algorithmic developments\",\"authors\":\"Sebastian Schaffer , Thomas Schrefl , Harald Oezelt , Norbert J. Mauser , Lukas Exl\",\"doi\":\"10.1016/j.cpc.2025.109719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we explore advanced machine learning techniques for minimizing Gibbs free energy in full 3D micromagnetic simulations. Building on Brown's bounds for magnetostatic self-energy, we revisit their application in the context of variational formulations of the transmission problems for the scalar and vector potential. To overcome the computational challenges posed by whole-space integrals, we reformulate these bounds on a finite domain, making the method more efficient and scalable for numerical simulation. Our approach utilizes an alternating optimization scheme for joint minimization of Brown's energy bounds and the Gibbs free energy. The Cayley transform is employed to rigorously enforce the unit norm constraint, while <em>R</em>-functions are used to impose essential boundary conditions in the computation of magnetostatic fields. Our results highlight the potential of mesh-free Physics-Informed Neural Networks (PINNs) and Extreme Learning Machines (ELMs) when integrated with hard constraints, providing highly accurate approximations. These methods exhibit competitive performance compared to traditional numerical approaches, showing significant promise in computing magnetostatic fields and the application for energy minimization, such as the computation of hysteresis curves. This work opens the path for future directions of research on more complex geometries, such as grain structure models, and the application to large scale problem settings which are intractable with traditional numerical methods.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"315 \",\"pages\":\"Article 109719\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465525002218\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525002218","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Physics aware machine learning for micromagnetic energy minimization: Recent algorithmic developments
In this work, we explore advanced machine learning techniques for minimizing Gibbs free energy in full 3D micromagnetic simulations. Building on Brown's bounds for magnetostatic self-energy, we revisit their application in the context of variational formulations of the transmission problems for the scalar and vector potential. To overcome the computational challenges posed by whole-space integrals, we reformulate these bounds on a finite domain, making the method more efficient and scalable for numerical simulation. Our approach utilizes an alternating optimization scheme for joint minimization of Brown's energy bounds and the Gibbs free energy. The Cayley transform is employed to rigorously enforce the unit norm constraint, while R-functions are used to impose essential boundary conditions in the computation of magnetostatic fields. Our results highlight the potential of mesh-free Physics-Informed Neural Networks (PINNs) and Extreme Learning Machines (ELMs) when integrated with hard constraints, providing highly accurate approximations. These methods exhibit competitive performance compared to traditional numerical approaches, showing significant promise in computing magnetostatic fields and the application for energy minimization, such as the computation of hysteresis curves. This work opens the path for future directions of research on more complex geometries, such as grain structure models, and the application to large scale problem settings which are intractable with traditional numerical methods.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.