在拉伸、CT和SENB试样中,XFEM断裂参数并不是唯一一致的整体行为

IF 4.7 2区 工程技术 Q1 MECHANICS
Kishan Dwivedi , Saher Attia , Himanshu Pathak , Samer Adeeb
{"title":"在拉伸、CT和SENB试样中,XFEM断裂参数并不是唯一一致的整体行为","authors":"Kishan Dwivedi ,&nbsp;Saher Attia ,&nbsp;Himanshu Pathak ,&nbsp;Samer Adeeb","doi":"10.1016/j.engfracmech.2025.111351","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates multiple sets of fracture parameters that yield the same global behavior for tensile, Compact Tension (CT) and Single Edge Notch Bending (SENB), using a cohesive zone model within the framework of the Extended Finite Element Method (XFEM) in Abaqus software. The cohesive zone model uses fracture energy and maximum principal strain as input parameters to determine damage initiation and crack propagation. By carefully balancing these two fracture parameters across different materials, it is possible to achieve comparable global responses in terms of fracture toughness. Crack Tip Opening Displacement (CTOD) and Crack Mouth Opening Displacement (CMOD) are used to evaluate fracture toughness for tensile, CT, and SENB specimens. Fracture behavior of specimens is presented through Force-CMOD and Force-CTOD curves for various sets of fracture parameters and compared for those sets, showing similar behaviors. The comparison includes an analysis of total crack length, cohesive damage area, and longitudinal strain (LE22) at different locations along the Force-CMOD curves where the CMOD values are identical. Additionally, this study examines the damage initiation location during crack propagation through maximum longitudinal strain perpendicular to the crack surface within region of interest. While the results show that multiple sets of XFEM fracture parameters can produce similar global Force-CMOD/CTOD responses, the local behavior around the crack tip differs significantly. For instance, the crack length varied by 10.46 % (tensile), 6.89 % (CT), and 4.96 % (SENB), and the maximum longitudinal strain near the crack surface changed by 20.80 %, 27.53 %, and 39.69 %, respectively. These findings reveal that global behavior alone is insufficient for selecting accurate XFEM fracture parameters and emphasize the need to also consider local behavior near the crack tip.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"325 ","pages":"Article 111351"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XFEM fracture parameters are not unique for consistent global behavior in tensile, CT, and SENB specimen\",\"authors\":\"Kishan Dwivedi ,&nbsp;Saher Attia ,&nbsp;Himanshu Pathak ,&nbsp;Samer Adeeb\",\"doi\":\"10.1016/j.engfracmech.2025.111351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates multiple sets of fracture parameters that yield the same global behavior for tensile, Compact Tension (CT) and Single Edge Notch Bending (SENB), using a cohesive zone model within the framework of the Extended Finite Element Method (XFEM) in Abaqus software. The cohesive zone model uses fracture energy and maximum principal strain as input parameters to determine damage initiation and crack propagation. By carefully balancing these two fracture parameters across different materials, it is possible to achieve comparable global responses in terms of fracture toughness. Crack Tip Opening Displacement (CTOD) and Crack Mouth Opening Displacement (CMOD) are used to evaluate fracture toughness for tensile, CT, and SENB specimens. Fracture behavior of specimens is presented through Force-CMOD and Force-CTOD curves for various sets of fracture parameters and compared for those sets, showing similar behaviors. The comparison includes an analysis of total crack length, cohesive damage area, and longitudinal strain (LE22) at different locations along the Force-CMOD curves where the CMOD values are identical. Additionally, this study examines the damage initiation location during crack propagation through maximum longitudinal strain perpendicular to the crack surface within region of interest. While the results show that multiple sets of XFEM fracture parameters can produce similar global Force-CMOD/CTOD responses, the local behavior around the crack tip differs significantly. For instance, the crack length varied by 10.46 % (tensile), 6.89 % (CT), and 4.96 % (SENB), and the maximum longitudinal strain near the crack surface changed by 20.80 %, 27.53 %, and 39.69 %, respectively. These findings reveal that global behavior alone is insufficient for selecting accurate XFEM fracture parameters and emphasize the need to also consider local behavior near the crack tip.</div></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":\"325 \",\"pages\":\"Article 111351\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794425005521\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794425005521","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究使用Abaqus软件中的扩展有限元法(XFEM)框架内的内聚区模型,研究了产生相同的拉伸、紧致拉伸(CT)和单边缘缺口弯曲(SENB)全局行为的多组断裂参数。黏聚区模型以断裂能和最大主应变为输入参数,确定损伤起裂和裂纹扩展。通过在不同材料上仔细平衡这两个断裂参数,就有可能在断裂韧性方面获得可比的全局响应。裂纹尖端张开位移(CTOD)和裂纹张开位移(CMOD)用于评估拉伸、CT和SENB试样的断裂韧性。通过不同断裂参数组的Force-CMOD和Force-CTOD曲线给出了试件的断裂行为,并对这些断裂参数组进行了比较,显示出相似的断裂行为。对比分析了CMOD值相同的Force-CMOD曲线上不同位置的总裂纹长度、内聚损伤面积和纵向应变(LE22)。此外,本研究通过在感兴趣区域内垂直于裂纹表面的最大纵向应变来检测裂纹扩展过程中的损伤起裂位置。结果表明,多组XFEM断裂参数可以产生相似的全局Force-CMOD/CTOD响应,但裂纹尖端附近的局部行为存在显著差异。例如,裂纹长度变化了10.46%(拉伸)、6.89% (CT)和4.96% (SENB),裂纹表面附近的最大纵向应变分别变化了20.80%、27.53%和39.69%。这些发现表明,仅考虑整体行为不足以选择准确的XFEM断裂参数,并强调还需要考虑裂纹尖端附近的局部行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
XFEM fracture parameters are not unique for consistent global behavior in tensile, CT, and SENB specimen
This study investigates multiple sets of fracture parameters that yield the same global behavior for tensile, Compact Tension (CT) and Single Edge Notch Bending (SENB), using a cohesive zone model within the framework of the Extended Finite Element Method (XFEM) in Abaqus software. The cohesive zone model uses fracture energy and maximum principal strain as input parameters to determine damage initiation and crack propagation. By carefully balancing these two fracture parameters across different materials, it is possible to achieve comparable global responses in terms of fracture toughness. Crack Tip Opening Displacement (CTOD) and Crack Mouth Opening Displacement (CMOD) are used to evaluate fracture toughness for tensile, CT, and SENB specimens. Fracture behavior of specimens is presented through Force-CMOD and Force-CTOD curves for various sets of fracture parameters and compared for those sets, showing similar behaviors. The comparison includes an analysis of total crack length, cohesive damage area, and longitudinal strain (LE22) at different locations along the Force-CMOD curves where the CMOD values are identical. Additionally, this study examines the damage initiation location during crack propagation through maximum longitudinal strain perpendicular to the crack surface within region of interest. While the results show that multiple sets of XFEM fracture parameters can produce similar global Force-CMOD/CTOD responses, the local behavior around the crack tip differs significantly. For instance, the crack length varied by 10.46 % (tensile), 6.89 % (CT), and 4.96 % (SENB), and the maximum longitudinal strain near the crack surface changed by 20.80 %, 27.53 %, and 39.69 %, respectively. These findings reveal that global behavior alone is insufficient for selecting accurate XFEM fracture parameters and emphasize the need to also consider local behavior near the crack tip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信