公角为arccos(1/3)的等角直线集合的枚举

IF 0.7 3区 数学 Q2 MATHEMATICS
Kiyoto Yoshino
{"title":"公角为arccos(1/3)的等角直线集合的枚举","authors":"Kiyoto Yoshino","doi":"10.1016/j.disc.2025.114647","DOIUrl":null,"url":null,"abstract":"<div><div>In 2018, Szöllősi and Östergård used a computer to enumerate sets of equiangular lines with common angle <span><math><mi>arccos</mi><mo>⁡</mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> in dimension 7. They observed that the numbers <span><math><mi>ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of sets of <em>n</em> equiangular lines with common angle <span><math><mi>arccos</mi><mo>⁡</mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> in dimension 7 are almost symmetric around <span><math><mi>n</mi><mo>=</mo><mn>14</mn></math></span>. In this paper, we prove without a computer that the numbers <span><math><mi>ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> are indeed almost symmetric by considering isometries from root lattices of rank at most 8 to the root lattice <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>8</mn></mrow></msub></math></span> of rank 8 and type <em>E</em>. Also, they determined the number <span><math><mi>s</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of sets of <em>n</em> equiangular lines with common angle <span><math><mi>arccos</mi><mo>⁡</mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≤</mo><mn>13</mn></math></span>. We construct all the sets of equiangular lines with common angle <span><math><mi>arccos</mi><mo>⁡</mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> in dimension greater than 7 from root lattices of type <em>A</em> or <em>D</em> with the aid of switching roots. As an application, we determine the number <span><math><mi>s</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for every positive integer <em>n</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114647"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enumeration of sets of equiangular lines with common angle arccos⁡(1/3)\",\"authors\":\"Kiyoto Yoshino\",\"doi\":\"10.1016/j.disc.2025.114647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In 2018, Szöllősi and Östergård used a computer to enumerate sets of equiangular lines with common angle <span><math><mi>arccos</mi><mo>⁡</mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> in dimension 7. They observed that the numbers <span><math><mi>ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of sets of <em>n</em> equiangular lines with common angle <span><math><mi>arccos</mi><mo>⁡</mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> in dimension 7 are almost symmetric around <span><math><mi>n</mi><mo>=</mo><mn>14</mn></math></span>. In this paper, we prove without a computer that the numbers <span><math><mi>ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> are indeed almost symmetric by considering isometries from root lattices of rank at most 8 to the root lattice <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>8</mn></mrow></msub></math></span> of rank 8 and type <em>E</em>. Also, they determined the number <span><math><mi>s</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of sets of <em>n</em> equiangular lines with common angle <span><math><mi>arccos</mi><mo>⁡</mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≤</mo><mn>13</mn></math></span>. We construct all the sets of equiangular lines with common angle <span><math><mi>arccos</mi><mo>⁡</mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> in dimension greater than 7 from root lattices of type <em>A</em> or <em>D</em> with the aid of switching roots. As an application, we determine the number <span><math><mi>s</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for every positive integer <em>n</em>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 12\",\"pages\":\"Article 114647\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002559\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002559","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

2018年,Szöllősi和Östergård用计算机枚举了7维的公角为arccos(1/3)的等角线集合。他们观察到,7维的n条公角为arccos(1/3)的等角直线的集合的ω(n)数几乎是围绕n=14对称的。本文在没有计算机的情况下,通过考虑从秩至多为8的根格到秩为8的e型根格E8的等距,证明了数ω(n)确实是几乎对称的,并确定了n≤13时n条公角为arccos(1/3)的等角直线的集合的个数s(n)。利用交换根的方法,从A型或D型根格出发,构造了维数大于7的公角为arccos(1/3)的等角直线集合。作为一个应用,我们确定每个正整数n的数s(n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enumeration of sets of equiangular lines with common angle arccos⁡(1/3)
In 2018, Szöllősi and Östergård used a computer to enumerate sets of equiangular lines with common angle arccos(1/3) in dimension 7. They observed that the numbers ω(n) of sets of n equiangular lines with common angle arccos(1/3) in dimension 7 are almost symmetric around n=14. In this paper, we prove without a computer that the numbers ω(n) are indeed almost symmetric by considering isometries from root lattices of rank at most 8 to the root lattice E8 of rank 8 and type E. Also, they determined the number s(n) of sets of n equiangular lines with common angle arccos(1/3) for n13. We construct all the sets of equiangular lines with common angle arccos(1/3) in dimension greater than 7 from root lattices of type A or D with the aid of switching roots. As an application, we determine the number s(n) for every positive integer n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信