{"title":"公角为arccos(1/3)的等角直线集合的枚举","authors":"Kiyoto Yoshino","doi":"10.1016/j.disc.2025.114647","DOIUrl":null,"url":null,"abstract":"<div><div>In 2018, Szöllősi and Östergård used a computer to enumerate sets of equiangular lines with common angle <span><math><mi>arccos</mi><mo></mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> in dimension 7. They observed that the numbers <span><math><mi>ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of sets of <em>n</em> equiangular lines with common angle <span><math><mi>arccos</mi><mo></mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> in dimension 7 are almost symmetric around <span><math><mi>n</mi><mo>=</mo><mn>14</mn></math></span>. In this paper, we prove without a computer that the numbers <span><math><mi>ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> are indeed almost symmetric by considering isometries from root lattices of rank at most 8 to the root lattice <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>8</mn></mrow></msub></math></span> of rank 8 and type <em>E</em>. Also, they determined the number <span><math><mi>s</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of sets of <em>n</em> equiangular lines with common angle <span><math><mi>arccos</mi><mo></mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≤</mo><mn>13</mn></math></span>. We construct all the sets of equiangular lines with common angle <span><math><mi>arccos</mi><mo></mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> in dimension greater than 7 from root lattices of type <em>A</em> or <em>D</em> with the aid of switching roots. As an application, we determine the number <span><math><mi>s</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for every positive integer <em>n</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114647"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enumeration of sets of equiangular lines with common angle arccos(1/3)\",\"authors\":\"Kiyoto Yoshino\",\"doi\":\"10.1016/j.disc.2025.114647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In 2018, Szöllősi and Östergård used a computer to enumerate sets of equiangular lines with common angle <span><math><mi>arccos</mi><mo></mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> in dimension 7. They observed that the numbers <span><math><mi>ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of sets of <em>n</em> equiangular lines with common angle <span><math><mi>arccos</mi><mo></mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> in dimension 7 are almost symmetric around <span><math><mi>n</mi><mo>=</mo><mn>14</mn></math></span>. In this paper, we prove without a computer that the numbers <span><math><mi>ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> are indeed almost symmetric by considering isometries from root lattices of rank at most 8 to the root lattice <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>8</mn></mrow></msub></math></span> of rank 8 and type <em>E</em>. Also, they determined the number <span><math><mi>s</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of sets of <em>n</em> equiangular lines with common angle <span><math><mi>arccos</mi><mo></mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≤</mo><mn>13</mn></math></span>. We construct all the sets of equiangular lines with common angle <span><math><mi>arccos</mi><mo></mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> in dimension greater than 7 from root lattices of type <em>A</em> or <em>D</em> with the aid of switching roots. As an application, we determine the number <span><math><mi>s</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for every positive integer <em>n</em>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 12\",\"pages\":\"Article 114647\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002559\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002559","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Enumeration of sets of equiangular lines with common angle arccos(1/3)
In 2018, Szöllősi and Östergård used a computer to enumerate sets of equiangular lines with common angle in dimension 7. They observed that the numbers of sets of n equiangular lines with common angle in dimension 7 are almost symmetric around . In this paper, we prove without a computer that the numbers are indeed almost symmetric by considering isometries from root lattices of rank at most 8 to the root lattice of rank 8 and type E. Also, they determined the number of sets of n equiangular lines with common angle for . We construct all the sets of equiangular lines with common angle in dimension greater than 7 from root lattices of type A or D with the aid of switching roots. As an application, we determine the number for every positive integer n.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.