通过构建氮化碳的典型形态来增强异质结的降解能力:机理见解和理论计算

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Xuan Xu , Haodong He , Chenyu Li , Lin Dai , Xiaoqi Chen , Yuqing Zhao , Zhiqiang Shen , Zhigang Qiu , Jingfeng Wang
{"title":"通过构建氮化碳的典型形态来增强异质结的降解能力:机理见解和理论计算","authors":"Xuan Xu ,&nbsp;Haodong He ,&nbsp;Chenyu Li ,&nbsp;Lin Dai ,&nbsp;Xiaoqi Chen ,&nbsp;Yuqing Zhao ,&nbsp;Zhiqiang Shen ,&nbsp;Zhigang Qiu ,&nbsp;Jingfeng Wang","doi":"10.1016/j.rineng.2025.105790","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon nitride (C<sub>3</sub>N<sub>4</sub>)-based heterojunctions have demonstrated remarkable potential in suppressing photogenerated carrier recombination and enhancing light-energy conversion efficiency, making them promising candidates for photocatalytic applications. However, the synergistic interplay between morphology regulation and heterojunction engineering remains underexplored. In this study, three distinct C<sub>3</sub>N<sub>4</sub> nanostructures—bulk (BCN), spherical (SCN), and vein-network (LCN)—were successfully synthesized via high-temperature calcination and solvothermal methods using melamine as the precursor. Subsequently, a Z-scheme C<sub>3</sub>N<sub>4</sub>/WO<sub>3</sub> heterojunction was constructed and employed for visible-light-driven tetracycline (TC) degradation. Comprehensive experimental characterizations and theoretical calculations revealed that morphological optimization critically influences the crystal structure, band alignment, and photoelectrochemical properties of C<sub>3</sub>N<sub>4</sub>. Finite-difference time-domain (FDTD) simulations and photoelectrochemical analyses further elucidated the mechanistic role of nanostructure design in enhancing charge separation and photoconversion efficiency. The Z-scheme heterojunction not only promoted localized charge density distribution but also significantly improved light absorption and carrier separation, leading to superior TC degradation performance. Notably, the LCN/WO<sub>3</sub> composite achieved 96.5 % TC removal within 60 min, outperforming BCN/WO<sub>3</sub> (75.3 %) and exhibiting degradation rates 2.24 and 8.48 times higher than those of BCN and pristine WO<sub>3</sub>, respectively. This work highlights the synergistic benefits of morphology control and heterojunction engineering in optimizing C<sub>3</sub>N<sub>4</sub>-based photocatalysts, offering a viable strategy for efficient antibiotic degradation.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"27 ","pages":"Article 105790"},"PeriodicalIF":7.9000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced degradation ability of heterojunction via construction of typical morphologies of carbon nitride: Mechanistic insights and theory calculations\",\"authors\":\"Xuan Xu ,&nbsp;Haodong He ,&nbsp;Chenyu Li ,&nbsp;Lin Dai ,&nbsp;Xiaoqi Chen ,&nbsp;Yuqing Zhao ,&nbsp;Zhiqiang Shen ,&nbsp;Zhigang Qiu ,&nbsp;Jingfeng Wang\",\"doi\":\"10.1016/j.rineng.2025.105790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon nitride (C<sub>3</sub>N<sub>4</sub>)-based heterojunctions have demonstrated remarkable potential in suppressing photogenerated carrier recombination and enhancing light-energy conversion efficiency, making them promising candidates for photocatalytic applications. However, the synergistic interplay between morphology regulation and heterojunction engineering remains underexplored. In this study, three distinct C<sub>3</sub>N<sub>4</sub> nanostructures—bulk (BCN), spherical (SCN), and vein-network (LCN)—were successfully synthesized via high-temperature calcination and solvothermal methods using melamine as the precursor. Subsequently, a Z-scheme C<sub>3</sub>N<sub>4</sub>/WO<sub>3</sub> heterojunction was constructed and employed for visible-light-driven tetracycline (TC) degradation. Comprehensive experimental characterizations and theoretical calculations revealed that morphological optimization critically influences the crystal structure, band alignment, and photoelectrochemical properties of C<sub>3</sub>N<sub>4</sub>. Finite-difference time-domain (FDTD) simulations and photoelectrochemical analyses further elucidated the mechanistic role of nanostructure design in enhancing charge separation and photoconversion efficiency. The Z-scheme heterojunction not only promoted localized charge density distribution but also significantly improved light absorption and carrier separation, leading to superior TC degradation performance. Notably, the LCN/WO<sub>3</sub> composite achieved 96.5 % TC removal within 60 min, outperforming BCN/WO<sub>3</sub> (75.3 %) and exhibiting degradation rates 2.24 and 8.48 times higher than those of BCN and pristine WO<sub>3</sub>, respectively. This work highlights the synergistic benefits of morphology control and heterojunction engineering in optimizing C<sub>3</sub>N<sub>4</sub>-based photocatalysts, offering a viable strategy for efficient antibiotic degradation.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"27 \",\"pages\":\"Article 105790\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123025018614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025018614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氮化碳(C3N4)基异质结在抑制光生载流子复合和提高光能转换效率方面表现出了显著的潜力,使其成为光催化应用的有希望的候选材料。然而,形态学调控与异质结工程之间的协同作用仍未得到充分的研究。在本研究中,以三聚氰胺为前驱体,通过高温煅烧和溶剂热法成功合成了三种不同的C3N4纳米结构——体状(BCN)、球形(SCN)和脉状网络(LCN)。随后,构建了Z-scheme C3N4/WO3异质结,并将其用于可见光驱动四环素(TC)降解。综合实验表征和理论计算表明,形态优化对C3N4的晶体结构、能带取向和光电化学性能有重要影响。时域有限差分(FDTD)模拟和光电化学分析进一步阐明了纳米结构设计在提高电荷分离和光转换效率方面的机制作用。z型异质结不仅促进了局域电荷密度分布,而且显著改善了光吸收和载流子分离,从而获得了优异的TC降解性能。值得注意的是,LCN/WO3复合材料在60 min内对TC的去除率达到96.5%,优于BCN/WO3(75.3%),降解率分别是BCN和原始WO3的2.24倍和8.48倍。这项工作强调了形态控制和异质结工程在优化c3n4基光催化剂中的协同效益,为有效降解抗生素提供了可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced degradation ability of heterojunction via construction of typical morphologies of carbon nitride: Mechanistic insights and theory calculations

Enhanced degradation ability of heterojunction via construction of typical morphologies of carbon nitride: Mechanistic insights and theory calculations
Carbon nitride (C3N4)-based heterojunctions have demonstrated remarkable potential in suppressing photogenerated carrier recombination and enhancing light-energy conversion efficiency, making them promising candidates for photocatalytic applications. However, the synergistic interplay between morphology regulation and heterojunction engineering remains underexplored. In this study, three distinct C3N4 nanostructures—bulk (BCN), spherical (SCN), and vein-network (LCN)—were successfully synthesized via high-temperature calcination and solvothermal methods using melamine as the precursor. Subsequently, a Z-scheme C3N4/WO3 heterojunction was constructed and employed for visible-light-driven tetracycline (TC) degradation. Comprehensive experimental characterizations and theoretical calculations revealed that morphological optimization critically influences the crystal structure, band alignment, and photoelectrochemical properties of C3N4. Finite-difference time-domain (FDTD) simulations and photoelectrochemical analyses further elucidated the mechanistic role of nanostructure design in enhancing charge separation and photoconversion efficiency. The Z-scheme heterojunction not only promoted localized charge density distribution but also significantly improved light absorption and carrier separation, leading to superior TC degradation performance. Notably, the LCN/WO3 composite achieved 96.5 % TC removal within 60 min, outperforming BCN/WO3 (75.3 %) and exhibiting degradation rates 2.24 and 8.48 times higher than those of BCN and pristine WO3, respectively. This work highlights the synergistic benefits of morphology control and heterojunction engineering in optimizing C3N4-based photocatalysts, offering a viable strategy for efficient antibiotic degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信