Huihui Ma , Cuihong Jin , Ting Wang , Wei Ge , Ke Dai , Yue Chen , Ding Mao , Zichuan Yuan , Yusheng Zhang , Daru Chen
{"title":"反常色散光纤激光器中反向饱和吸收耗散孤子共振的产生","authors":"Huihui Ma , Cuihong Jin , Ting Wang , Wei Ge , Ke Dai , Yue Chen , Ding Mao , Zichuan Yuan , Yusheng Zhang , Daru Chen","doi":"10.1016/j.optcom.2025.132129","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we experimentally investigate the generation of dissipative soliton resonance (DSR) pulses in the anomalous dispersion regime, enabled by the reverse saturable absorption (RSA) effect. The RSA effect is achieved by tailoring the saturable absorption characteristics of a single-walled carbon nanotube-polyvinyl alcohol composite film. Our findings indicate that a strong RSA effect can suppress spectral broadening and prevent pulse breakup in a high-gain cavity, facilitating the formation of DSR pulses. At a central wavelength of 1560.3 nm, we obtain rectangular pulses with durations ranging from 0.74 ns to 3.4 ns, achieving a single-pulse energy of 0.139 nJ. Additionally, our results show that the peak power of DSR pulses increases with the saturation power, consistent with observations in the normal dispersion regime. This study highlights the crucial role of the RSA effect in carbon nanotube films for generating DSR pulses, offering valuable insights for the development of high-performance carbon-based fiber lasers.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"591 ","pages":"Article 132129"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of dissipative soliton resonance with reverse saturable absorption in anomalous-dispersion fiber lasers\",\"authors\":\"Huihui Ma , Cuihong Jin , Ting Wang , Wei Ge , Ke Dai , Yue Chen , Ding Mao , Zichuan Yuan , Yusheng Zhang , Daru Chen\",\"doi\":\"10.1016/j.optcom.2025.132129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we experimentally investigate the generation of dissipative soliton resonance (DSR) pulses in the anomalous dispersion regime, enabled by the reverse saturable absorption (RSA) effect. The RSA effect is achieved by tailoring the saturable absorption characteristics of a single-walled carbon nanotube-polyvinyl alcohol composite film. Our findings indicate that a strong RSA effect can suppress spectral broadening and prevent pulse breakup in a high-gain cavity, facilitating the formation of DSR pulses. At a central wavelength of 1560.3 nm, we obtain rectangular pulses with durations ranging from 0.74 ns to 3.4 ns, achieving a single-pulse energy of 0.139 nJ. Additionally, our results show that the peak power of DSR pulses increases with the saturation power, consistent with observations in the normal dispersion regime. This study highlights the crucial role of the RSA effect in carbon nanotube films for generating DSR pulses, offering valuable insights for the development of high-performance carbon-based fiber lasers.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"591 \",\"pages\":\"Article 132129\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401825006571\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825006571","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Generation of dissipative soliton resonance with reverse saturable absorption in anomalous-dispersion fiber lasers
In this work, we experimentally investigate the generation of dissipative soliton resonance (DSR) pulses in the anomalous dispersion regime, enabled by the reverse saturable absorption (RSA) effect. The RSA effect is achieved by tailoring the saturable absorption characteristics of a single-walled carbon nanotube-polyvinyl alcohol composite film. Our findings indicate that a strong RSA effect can suppress spectral broadening and prevent pulse breakup in a high-gain cavity, facilitating the formation of DSR pulses. At a central wavelength of 1560.3 nm, we obtain rectangular pulses with durations ranging from 0.74 ns to 3.4 ns, achieving a single-pulse energy of 0.139 nJ. Additionally, our results show that the peak power of DSR pulses increases with the saturation power, consistent with observations in the normal dispersion regime. This study highlights the crucial role of the RSA effect in carbon nanotube films for generating DSR pulses, offering valuable insights for the development of high-performance carbon-based fiber lasers.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.