光系统II反应中心长短期记忆网络预测的量子动力学演化

IF 2.5 3区 物理与天体物理 Q2 OPTICS
Zi-Ran Zhao, Shun-Cai Zhao, Yi-Meng Huang
{"title":"光系统II反应中心长短期记忆网络预测的量子动力学演化","authors":"Zi-Ran Zhao,&nbsp;Shun-Cai Zhao,&nbsp;Yi-Meng Huang","doi":"10.1016/j.optcom.2025.132045","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting future physical behavior from limited theoretical simulation data is an emerging research paradigm driven by the integration of artificial intelligence and quantum physics. In this work, charge transport (CT) behavior was predicted over extended time scales using a deep learning model-the long short-term memory (LSTM) network with an error-threshold training method-in the photosystem II reaction center (PSII-RC). Theoretical simulation data within 8 fs were used to train the modified LSTM network, yielding distinct predictions with differences on the order of <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> over prolonged periods compared to the training set collection time. The results highlight the potential of LSTM to uncover the underlying physics governing CT beyond conventional quantum physical methods. These findings explores the possibility of a physics research paradigm that predicts future events with limited data. (<span><span>Original codes in Supplement information</span><svg><path></path></svg></span>).</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"591 ","pages":"Article 132045"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum dynamics evolution predicted by the long short-term memory network in the photosystem II reaction center\",\"authors\":\"Zi-Ran Zhao,&nbsp;Shun-Cai Zhao,&nbsp;Yi-Meng Huang\",\"doi\":\"10.1016/j.optcom.2025.132045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Predicting future physical behavior from limited theoretical simulation data is an emerging research paradigm driven by the integration of artificial intelligence and quantum physics. In this work, charge transport (CT) behavior was predicted over extended time scales using a deep learning model-the long short-term memory (LSTM) network with an error-threshold training method-in the photosystem II reaction center (PSII-RC). Theoretical simulation data within 8 fs were used to train the modified LSTM network, yielding distinct predictions with differences on the order of <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> over prolonged periods compared to the training set collection time. The results highlight the potential of LSTM to uncover the underlying physics governing CT beyond conventional quantum physical methods. These findings explores the possibility of a physics research paradigm that predicts future events with limited data. (<span><span>Original codes in Supplement information</span><svg><path></path></svg></span>).</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"591 \",\"pages\":\"Article 132045\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401825005735\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825005735","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

从有限的理论模拟数据预测未来的物理行为是人工智能和量子物理相结合的新兴研究范式。在这项工作中,在光系统II反应中心(PSII-RC)中,使用深度学习模型-具有误差阈值训练方法的长短期记忆(LSTM)网络,在延长的时间尺度上预测电荷输运(CT)行为。8秒内的理论模拟数据被用于训练改进的LSTM网络,与训练集收集时间相比,在较长时间内产生了不同的预测,差异在10−4的数量级。结果突出了LSTM在揭示常规量子物理方法之外控制CT的潜在物理方面的潜力。这些发现探索了用有限的数据预测未来事件的物理研究范式的可能性。(原始代码见补充信息)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum dynamics evolution predicted by the long short-term memory network in the photosystem II reaction center
Predicting future physical behavior from limited theoretical simulation data is an emerging research paradigm driven by the integration of artificial intelligence and quantum physics. In this work, charge transport (CT) behavior was predicted over extended time scales using a deep learning model-the long short-term memory (LSTM) network with an error-threshold training method-in the photosystem II reaction center (PSII-RC). Theoretical simulation data within 8 fs were used to train the modified LSTM network, yielding distinct predictions with differences on the order of 104 over prolonged periods compared to the training set collection time. The results highlight the potential of LSTM to uncover the underlying physics governing CT beyond conventional quantum physical methods. These findings explores the possibility of a physics research paradigm that predicts future events with limited data. (Original codes in Supplement information).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信