Lang Liu , Marcin Ireneusz Duda , Antonio F. Salazar Vásquez , Andreas Nicolas Berntsen
{"title":"光纤传感在实验室和野外地质力学中的应用综述","authors":"Lang Liu , Marcin Ireneusz Duda , Antonio F. Salazar Vásquez , Andreas Nicolas Berntsen","doi":"10.1016/j.gete.2025.100699","DOIUrl":null,"url":null,"abstract":"<div><div>Geomechanical characterization and monitoring are essential for subsurface projects, including underground mining, geo-energy production, groundwater management, and geological storages of CO2 and radioactive waste. Traditional measurement techniques often face challenges such as limited spatial coverage and high operational costs. Fiber optic sensing (FOS) offers a promising alternative due to its scalability, durability, and high spatial resolution, making it particularly suitable for harsh environments and large-scale applications. This paper provides a comprehensive and critical review of the use of FOS in geomechanics, covering the principles of quasi- and fully distributed sensing and focusing on strain measurement in both laboratory and field settings. We discuss various techniques for fiber cable installation and explore the integration of FOS with other geomechanical monitoring techniques. Based on the challenges identified in the reviewed studies, we conclude that there is a need for improved fiber coupling and measurement corrections, efficient fiber cable installation, robust data handling and interpretation, and standardization across different geomechanical applications.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"43 ","pages":"Article 100699"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of fiber optic sensing in geomechanical applications at laboratory and field scales\",\"authors\":\"Lang Liu , Marcin Ireneusz Duda , Antonio F. Salazar Vásquez , Andreas Nicolas Berntsen\",\"doi\":\"10.1016/j.gete.2025.100699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Geomechanical characterization and monitoring are essential for subsurface projects, including underground mining, geo-energy production, groundwater management, and geological storages of CO2 and radioactive waste. Traditional measurement techniques often face challenges such as limited spatial coverage and high operational costs. Fiber optic sensing (FOS) offers a promising alternative due to its scalability, durability, and high spatial resolution, making it particularly suitable for harsh environments and large-scale applications. This paper provides a comprehensive and critical review of the use of FOS in geomechanics, covering the principles of quasi- and fully distributed sensing and focusing on strain measurement in both laboratory and field settings. We discuss various techniques for fiber cable installation and explore the integration of FOS with other geomechanical monitoring techniques. Based on the challenges identified in the reviewed studies, we conclude that there is a need for improved fiber coupling and measurement corrections, efficient fiber cable installation, robust data handling and interpretation, and standardization across different geomechanical applications.</div></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"43 \",\"pages\":\"Article 100699\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380825000644\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825000644","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A review of fiber optic sensing in geomechanical applications at laboratory and field scales
Geomechanical characterization and monitoring are essential for subsurface projects, including underground mining, geo-energy production, groundwater management, and geological storages of CO2 and radioactive waste. Traditional measurement techniques often face challenges such as limited spatial coverage and high operational costs. Fiber optic sensing (FOS) offers a promising alternative due to its scalability, durability, and high spatial resolution, making it particularly suitable for harsh environments and large-scale applications. This paper provides a comprehensive and critical review of the use of FOS in geomechanics, covering the principles of quasi- and fully distributed sensing and focusing on strain measurement in both laboratory and field settings. We discuss various techniques for fiber cable installation and explore the integration of FOS with other geomechanical monitoring techniques. Based on the challenges identified in the reviewed studies, we conclude that there is a need for improved fiber coupling and measurement corrections, efficient fiber cable installation, robust data handling and interpretation, and standardization across different geomechanical applications.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.