铁电存储器延迟后读取的根本原因

Chip Pub Date : 2025-03-16 DOI:10.1016/j.chip.2025.100139
Diqing Su , Shaorui Li , Xiao Wang , Yannan Xu , Qingting Ding , Heng Zhang , Hangbing Lyu
{"title":"铁电存储器延迟后读取的根本原因","authors":"Diqing Su ,&nbsp;Shaorui Li ,&nbsp;Xiao Wang ,&nbsp;Yannan Xu ,&nbsp;Qingting Ding ,&nbsp;Heng Zhang ,&nbsp;Hangbing Lyu","doi":"10.1016/j.chip.2025.100139","DOIUrl":null,"url":null,"abstract":"<div><div>Accelerated margin loss during read after delay (RAD) is a newly discovered reliability concern in HfO<sub>2</sub>-based ferroelectric random access memories (FeRAMs), which significantly impacts the lifetime of the memory device. Unlike conventional fatigue effect, this issue is closely linked to the coercive field (<span><math><mrow><msub><mi>E</mi><mi>c</mi></msub></mrow></math></span>) shift, or imprint, during bipolar electrical field cycling at intermediate frequency. The precise cause of imprint during RAD, however, remains elusive. To investigate, we employed customized electrical testing to examine the charge transfer behavior in static imprint (SI) and continuous read/write (CRW) scenarios, which can be viewed as RAD performed at minimum and maximum frequencies. Our findings reveal that interfacial charge injection is the primary mechanism for imprint in SI, while bulk charge drives the imprint in asymmetric CRW. Further exploration with a SPICE-based charge transfer model suggests that RAD-related imprint is the result of bulk charge migration, driven by the periodically restored depolarization field after read/write-back operation. Experimental verification supports this theory, highlighting the importance of interface engineering to enhance bound charge screening and element doping to elevate the migration barrier for bulk charges in addressing the RAD problem.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 3","pages":"Article 100139"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Root cause of read after delay in ferroelectric memories\",\"authors\":\"Diqing Su ,&nbsp;Shaorui Li ,&nbsp;Xiao Wang ,&nbsp;Yannan Xu ,&nbsp;Qingting Ding ,&nbsp;Heng Zhang ,&nbsp;Hangbing Lyu\",\"doi\":\"10.1016/j.chip.2025.100139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accelerated margin loss during read after delay (RAD) is a newly discovered reliability concern in HfO<sub>2</sub>-based ferroelectric random access memories (FeRAMs), which significantly impacts the lifetime of the memory device. Unlike conventional fatigue effect, this issue is closely linked to the coercive field (<span><math><mrow><msub><mi>E</mi><mi>c</mi></msub></mrow></math></span>) shift, or imprint, during bipolar electrical field cycling at intermediate frequency. The precise cause of imprint during RAD, however, remains elusive. To investigate, we employed customized electrical testing to examine the charge transfer behavior in static imprint (SI) and continuous read/write (CRW) scenarios, which can be viewed as RAD performed at minimum and maximum frequencies. Our findings reveal that interfacial charge injection is the primary mechanism for imprint in SI, while bulk charge drives the imprint in asymmetric CRW. Further exploration with a SPICE-based charge transfer model suggests that RAD-related imprint is the result of bulk charge migration, driven by the periodically restored depolarization field after read/write-back operation. Experimental verification supports this theory, highlighting the importance of interface engineering to enhance bound charge screening and element doping to elevate the migration barrier for bulk charges in addressing the RAD problem.</div></div>\",\"PeriodicalId\":100244,\"journal\":{\"name\":\"Chip\",\"volume\":\"4 3\",\"pages\":\"Article 100139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2709472325000139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472325000139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

延迟后读取(RAD)过程中的加速余量损失是基于hfo2的铁电随机存取存储器(FeRAMs)中一个新发现的可靠性问题,它对存储器器件的使用寿命有重要影响。与传统的疲劳效应不同,这个问题与中频双极电场循环过程中的矫顽力场(Ec)位移或压印密切相关。然而,RAD期间印记的确切原因仍然难以捉摸。为了进行研究,我们采用定制的电测试来检查静态压印(SI)和连续读/写(CRW)场景下的电荷转移行为,这可以被视为在最小和最高频率下执行的RAD。我们的研究结果表明,界面电荷注入是SI中压印的主要机制,而非对称CRW中的体电荷驱动压印。基于spice的电荷转移模型的进一步研究表明,rad相关印记是由读/写回操作后周期性恢复的去极化场驱动的大量电荷迁移的结果。实验验证支持这一理论,强调了界面工程对增强束缚电荷筛选和元素掺杂对提高块电荷迁移屏障在解决RAD问题中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Root cause of read after delay in ferroelectric memories
Accelerated margin loss during read after delay (RAD) is a newly discovered reliability concern in HfO2-based ferroelectric random access memories (FeRAMs), which significantly impacts the lifetime of the memory device. Unlike conventional fatigue effect, this issue is closely linked to the coercive field (Ec) shift, or imprint, during bipolar electrical field cycling at intermediate frequency. The precise cause of imprint during RAD, however, remains elusive. To investigate, we employed customized electrical testing to examine the charge transfer behavior in static imprint (SI) and continuous read/write (CRW) scenarios, which can be viewed as RAD performed at minimum and maximum frequencies. Our findings reveal that interfacial charge injection is the primary mechanism for imprint in SI, while bulk charge drives the imprint in asymmetric CRW. Further exploration with a SPICE-based charge transfer model suggests that RAD-related imprint is the result of bulk charge migration, driven by the periodically restored depolarization field after read/write-back operation. Experimental verification supports this theory, highlighting the importance of interface engineering to enhance bound charge screening and element doping to elevate the migration barrier for bulk charges in addressing the RAD problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信