基于纳米增强复合材料的动态PCM策略优化热能储存和管理

IF 5.5 Q1 ENGINEERING, CHEMICAL
Amit Kumar Mishra , Matteo Morciano , Biruk Wondifraw Agegnehu , Elena Campagnoli , Valter Giaretto , Andrea Bottega , Matteo Fasano , Luigi Mongibello , Eliodoro Chiavazzo
{"title":"基于纳米增强复合材料的动态PCM策略优化热能储存和管理","authors":"Amit Kumar Mishra ,&nbsp;Matteo Morciano ,&nbsp;Biruk Wondifraw Agegnehu ,&nbsp;Elena Campagnoli ,&nbsp;Valter Giaretto ,&nbsp;Andrea Bottega ,&nbsp;Matteo Fasano ,&nbsp;Luigi Mongibello ,&nbsp;Eliodoro Chiavazzo","doi":"10.1016/j.ceja.2025.100789","DOIUrl":null,"url":null,"abstract":"<div><div>We demonstrated the role of dynamic phase change materials (dynamic PCM) and nanofiller characteristics in the effective improvement of thermal energy storage (TES) and management performance. This is the very first study where nano-enhanced PCMs have been tested in a dynPCM configuration and compared the heat storage potential with respect to pristine PCM. We investigated the influence of nanofiller characteristics on the effective thermophysical properties of composite PCMs. To this end, we report a remarkable enhancement in thermal conductivity (∼76 %) in lauric acid-based composite PCMs loaded with 4 wt. % graphene nanoplatelets (GNP) and carbon black (CBNP) concentrations. Those improvements are known to be attributed to the ability of nanofillers to establish efficient heat transfer by percolating network structures. We illustrated dynPCM is an effective approach to control the melt-front thickness (δ) and thus interface thermal resistance, which significantly improves power density for the latent TES system, and may benefit from the presence of PCM nanocomposites. Recently, PCMs have also shown promising potential for direct solar energy harvesting. Notably, GNP-based composite PCMs can be used for superior solar thermoelectric performance (enhanced output voltage ∼ 36 %) compared to pristine PCMs, resulting from the synergistic effects of improved heat conduction and photothermal conversion. This work presents robust experimental findings highlighting the potential of nanocomposite PCMs and dynPCM in advancing TES and solar energy harvesting technologies.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"23 ","pages":"Article 100789"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic PCM strategies with nano-enhanced composites for optimal thermal energy storage and management\",\"authors\":\"Amit Kumar Mishra ,&nbsp;Matteo Morciano ,&nbsp;Biruk Wondifraw Agegnehu ,&nbsp;Elena Campagnoli ,&nbsp;Valter Giaretto ,&nbsp;Andrea Bottega ,&nbsp;Matteo Fasano ,&nbsp;Luigi Mongibello ,&nbsp;Eliodoro Chiavazzo\",\"doi\":\"10.1016/j.ceja.2025.100789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We demonstrated the role of dynamic phase change materials (dynamic PCM) and nanofiller characteristics in the effective improvement of thermal energy storage (TES) and management performance. This is the very first study where nano-enhanced PCMs have been tested in a dynPCM configuration and compared the heat storage potential with respect to pristine PCM. We investigated the influence of nanofiller characteristics on the effective thermophysical properties of composite PCMs. To this end, we report a remarkable enhancement in thermal conductivity (∼76 %) in lauric acid-based composite PCMs loaded with 4 wt. % graphene nanoplatelets (GNP) and carbon black (CBNP) concentrations. Those improvements are known to be attributed to the ability of nanofillers to establish efficient heat transfer by percolating network structures. We illustrated dynPCM is an effective approach to control the melt-front thickness (δ) and thus interface thermal resistance, which significantly improves power density for the latent TES system, and may benefit from the presence of PCM nanocomposites. Recently, PCMs have also shown promising potential for direct solar energy harvesting. Notably, GNP-based composite PCMs can be used for superior solar thermoelectric performance (enhanced output voltage ∼ 36 %) compared to pristine PCMs, resulting from the synergistic effects of improved heat conduction and photothermal conversion. This work presents robust experimental findings highlighting the potential of nanocomposite PCMs and dynPCM in advancing TES and solar energy harvesting technologies.</div></div>\",\"PeriodicalId\":9749,\"journal\":{\"name\":\"Chemical Engineering Journal Advances\",\"volume\":\"23 \",\"pages\":\"Article 100789\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666821125000869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125000869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了动态相变材料(dynamic PCM)和纳米填料特性在有效改善热能储存(TES)和管理性能中的作用。这是第一次在dynPCM配置中测试纳米增强PCM,并将其与原始PCM的储热潜力进行比较。研究了纳米填料特性对复合PCMs有效热物理性能的影响。为此,我们报告了负载4 wt. %的石墨烯纳米片(GNP)和炭黑(CBNP)浓度的月桂酸基复合PCMs的导热性显著增强(约76%)。众所周知,这些改进归功于纳米填料通过渗透网络结构建立有效传热的能力。我们说明了dynPCM是一种有效的方法来控制熔体前厚度(δ),从而控制界面热阻,这显著提高了潜在TES系统的功率密度,并且可能受益于PCM纳米复合材料的存在。最近,pcm也显示出直接太阳能收集的巨大潜力。值得注意的是,与原始pcm相比,基于gnp的复合pcm可用于优越的太阳能热电性能(提高输出电压~ 36%),这是由于改进的热传导和光热转换的协同效应。这项工作提出了强有力的实验结果,突出了纳米复合pcm和dynPCM在推进TES和太阳能收集技术方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic PCM strategies with nano-enhanced composites for optimal thermal energy storage and management
We demonstrated the role of dynamic phase change materials (dynamic PCM) and nanofiller characteristics in the effective improvement of thermal energy storage (TES) and management performance. This is the very first study where nano-enhanced PCMs have been tested in a dynPCM configuration and compared the heat storage potential with respect to pristine PCM. We investigated the influence of nanofiller characteristics on the effective thermophysical properties of composite PCMs. To this end, we report a remarkable enhancement in thermal conductivity (∼76 %) in lauric acid-based composite PCMs loaded with 4 wt. % graphene nanoplatelets (GNP) and carbon black (CBNP) concentrations. Those improvements are known to be attributed to the ability of nanofillers to establish efficient heat transfer by percolating network structures. We illustrated dynPCM is an effective approach to control the melt-front thickness (δ) and thus interface thermal resistance, which significantly improves power density for the latent TES system, and may benefit from the presence of PCM nanocomposites. Recently, PCMs have also shown promising potential for direct solar energy harvesting. Notably, GNP-based composite PCMs can be used for superior solar thermoelectric performance (enhanced output voltage ∼ 36 %) compared to pristine PCMs, resulting from the synergistic effects of improved heat conduction and photothermal conversion. This work presents robust experimental findings highlighting the potential of nanocomposite PCMs and dynPCM in advancing TES and solar energy harvesting technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信