用NiFe磷化物包覆的TiO2/In2S3异质结增强太阳能水分解

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Ming Zhang , Jiale Xie , Pingping Yang , Pai Peng , Youyi Su , Xiangui Pang , Haohua Wang , Yan Xiang , Cheng Huang , Xinxin Lu
{"title":"用NiFe磷化物包覆的TiO2/In2S3异质结增强太阳能水分解","authors":"Ming Zhang ,&nbsp;Jiale Xie ,&nbsp;Pingping Yang ,&nbsp;Pai Peng ,&nbsp;Youyi Su ,&nbsp;Xiangui Pang ,&nbsp;Haohua Wang ,&nbsp;Yan Xiang ,&nbsp;Cheng Huang ,&nbsp;Xinxin Lu","doi":"10.1016/j.ijhydene.2025.150058","DOIUrl":null,"url":null,"abstract":"<div><div>A robust photoelectrode is urgently needed for practical solar water splitting. TiO<sub>2</sub> has recognized stability in a wide pH range, but its performance is limited by poor charge separation and low light absorption. In this work, a heterojunction photoelectrode of TiO<sub>2</sub>/In<sub>2</sub>S<sub>3</sub> has been fabricated through a hydrothermal method and coated with bimetallic NiFe phosphide (NiFeP) cocatalyst derived from NiFe Prussian blue analogue through a low temperature phosphidation process. The TiO<sub>2</sub>/In<sub>2</sub>S<sub>3</sub>/NiFeP photoanode delivers a remarkable photocurrent of 3.18 mA cm<sup>−2</sup> at 1.23 V vs. RHE, which is 92.17 % of its theoretical photocurrent. Stability testing under AM 1.5G illumination reveals that this photoanode retains 97.67 % of its initial photocurrent after 12 h in 1 M KOH electrolyte without the sacrificial reagent. Moreover, the TiO<sub>2</sub>/In<sub>2</sub>S<sub>3</sub>/NiFeP delivers a superior charge separation efficiency of 92.46 % and a high charge injection efficiency of 92.31 %. Due to the use of narrow bandgap In<sub>2</sub>S<sub>3</sub>, the composite photoanode achieves improved light absorption and efficient charge separation, benefiting from the type-II heterojunction between TiO<sub>2</sub> and In<sub>2</sub>S<sub>3</sub>. The integration of the NiFeP cocatalyst further accelerates charge transfer through the favorable surface states at the semiconductor-electrolyte interface and protects the In<sub>2</sub>S<sub>3</sub> layer from photocorrosion.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"148 ","pages":"Article 150058"},"PeriodicalIF":8.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced solar water splitting using a TiO2/In2S3 heterojunction coated with NiFe phosphide cocatalyst\",\"authors\":\"Ming Zhang ,&nbsp;Jiale Xie ,&nbsp;Pingping Yang ,&nbsp;Pai Peng ,&nbsp;Youyi Su ,&nbsp;Xiangui Pang ,&nbsp;Haohua Wang ,&nbsp;Yan Xiang ,&nbsp;Cheng Huang ,&nbsp;Xinxin Lu\",\"doi\":\"10.1016/j.ijhydene.2025.150058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A robust photoelectrode is urgently needed for practical solar water splitting. TiO<sub>2</sub> has recognized stability in a wide pH range, but its performance is limited by poor charge separation and low light absorption. In this work, a heterojunction photoelectrode of TiO<sub>2</sub>/In<sub>2</sub>S<sub>3</sub> has been fabricated through a hydrothermal method and coated with bimetallic NiFe phosphide (NiFeP) cocatalyst derived from NiFe Prussian blue analogue through a low temperature phosphidation process. The TiO<sub>2</sub>/In<sub>2</sub>S<sub>3</sub>/NiFeP photoanode delivers a remarkable photocurrent of 3.18 mA cm<sup>−2</sup> at 1.23 V vs. RHE, which is 92.17 % of its theoretical photocurrent. Stability testing under AM 1.5G illumination reveals that this photoanode retains 97.67 % of its initial photocurrent after 12 h in 1 M KOH electrolyte without the sacrificial reagent. Moreover, the TiO<sub>2</sub>/In<sub>2</sub>S<sub>3</sub>/NiFeP delivers a superior charge separation efficiency of 92.46 % and a high charge injection efficiency of 92.31 %. Due to the use of narrow bandgap In<sub>2</sub>S<sub>3</sub>, the composite photoanode achieves improved light absorption and efficient charge separation, benefiting from the type-II heterojunction between TiO<sub>2</sub> and In<sub>2</sub>S<sub>3</sub>. The integration of the NiFeP cocatalyst further accelerates charge transfer through the favorable surface states at the semiconductor-electrolyte interface and protects the In<sub>2</sub>S<sub>3</sub> layer from photocorrosion.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"148 \",\"pages\":\"Article 150058\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925030472\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925030472","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

迫切需要一种坚固的光电极来实现实际的太阳能水分解。TiO2在较宽的pH范围内具有公认的稳定性,但其性能受到电荷分离性差和光吸收低的限制。本研究通过水热法制备了TiO2/In2S3异质结光电极,并通过低温磷化工艺涂覆了由NiFe普鲁士蓝类似物衍生的双金属NiFe磷化物(NiFeP)助催化剂。与RHE相比,TiO2/In2S3/NiFeP光阳极在1.23 V下的光电流为3.18 mA cm−2,为理论光电流的92.17%。在AM 1.5G照明下的稳定性测试表明,该光阳极在1 M KOH电解液中经过12 h后,在没有牺牲试剂的情况下保持了97.67%的初始光电流。此外,TiO2/In2S3/NiFeP具有92.46%的电荷分离效率和92.31%的电荷注入效率。由于使用窄带隙In2S3,复合光阳极获得了更好的光吸收和高效的电荷分离,这得益于TiO2与In2S3之间的ii型异质结。NiFeP助催化剂的集成进一步加速了半导体-电解质界面上有利的表面态的电荷转移,并保护In2S3层免受光腐蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced solar water splitting using a TiO2/In2S3 heterojunction coated with NiFe phosphide cocatalyst

Enhanced solar water splitting using a TiO2/In2S3 heterojunction coated with NiFe phosphide cocatalyst
A robust photoelectrode is urgently needed for practical solar water splitting. TiO2 has recognized stability in a wide pH range, but its performance is limited by poor charge separation and low light absorption. In this work, a heterojunction photoelectrode of TiO2/In2S3 has been fabricated through a hydrothermal method and coated with bimetallic NiFe phosphide (NiFeP) cocatalyst derived from NiFe Prussian blue analogue through a low temperature phosphidation process. The TiO2/In2S3/NiFeP photoanode delivers a remarkable photocurrent of 3.18 mA cm−2 at 1.23 V vs. RHE, which is 92.17 % of its theoretical photocurrent. Stability testing under AM 1.5G illumination reveals that this photoanode retains 97.67 % of its initial photocurrent after 12 h in 1 M KOH electrolyte without the sacrificial reagent. Moreover, the TiO2/In2S3/NiFeP delivers a superior charge separation efficiency of 92.46 % and a high charge injection efficiency of 92.31 %. Due to the use of narrow bandgap In2S3, the composite photoanode achieves improved light absorption and efficient charge separation, benefiting from the type-II heterojunction between TiO2 and In2S3. The integration of the NiFeP cocatalyst further accelerates charge transfer through the favorable surface states at the semiconductor-electrolyte interface and protects the In2S3 layer from photocorrosion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信