Michael P. Wiggs , Carla MC. Nascimento , Kevin L. Shimkus , James D. Fluckey
{"title":"短暂的动态再负荷可提高肌肉蛋白合成,但不能防止后肢未负荷大鼠的废用性萎缩","authors":"Michael P. Wiggs , Carla MC. Nascimento , Kevin L. Shimkus , James D. Fluckey","doi":"10.1016/j.bbrep.2025.102100","DOIUrl":null,"url":null,"abstract":"<div><div>Disuse muscle atrophy remains a major challenge in contexts such as prolonged bed rest or microgravity. Here, we investigated whether brief bouts of ambulatory reloading could attenuate skeletal muscle atrophy caused by five days of hindlimb unloading (HU) in rats. Using a deuterium oxide tracer, we measured integrative protein synthesis (fractional synthesis rate, FSR) in the soleus, plantaris, and gastrocnemius muscles, including distinct portions of the muscle that are composed mostly of red, white, and mixed fibers. HU significantly reduced both muscle mass and FSR in the predominantly slow-twitch soleus and in the predominantly fast gastrocnemius. Intermittent ambulatory reloading (HU + AR) partially restored FSR in the soleus and gastrocnemius but did not recover soleus or gastrocnemius mass to control levels. The plantaris muscle showed no differences in mass or FSR among groups, suggesting muscle-specific responses to unloading and reloading. Fiber-type analyses revealed that portions of the gastrocnemius that are mostly red fibers had higher baseline FSR than mixed or white portions, while HU consistently depressed protein synthesis across all fiber types. In conclusion, although intermittent ambulation increased protein synthesis during HU, it was not sufficient to prevent overall muscle mass loss. These findings emphasize the importance of both the duration and intensity of loading in preserving skeletal muscle during periods of disuse.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"43 ","pages":"Article 102100"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brief ambulatory reloading elevates muscle protein synthesis but does not prevent disuse atrophy in hindlimb-unloaded rats\",\"authors\":\"Michael P. Wiggs , Carla MC. Nascimento , Kevin L. Shimkus , James D. Fluckey\",\"doi\":\"10.1016/j.bbrep.2025.102100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Disuse muscle atrophy remains a major challenge in contexts such as prolonged bed rest or microgravity. Here, we investigated whether brief bouts of ambulatory reloading could attenuate skeletal muscle atrophy caused by five days of hindlimb unloading (HU) in rats. Using a deuterium oxide tracer, we measured integrative protein synthesis (fractional synthesis rate, FSR) in the soleus, plantaris, and gastrocnemius muscles, including distinct portions of the muscle that are composed mostly of red, white, and mixed fibers. HU significantly reduced both muscle mass and FSR in the predominantly slow-twitch soleus and in the predominantly fast gastrocnemius. Intermittent ambulatory reloading (HU + AR) partially restored FSR in the soleus and gastrocnemius but did not recover soleus or gastrocnemius mass to control levels. The plantaris muscle showed no differences in mass or FSR among groups, suggesting muscle-specific responses to unloading and reloading. Fiber-type analyses revealed that portions of the gastrocnemius that are mostly red fibers had higher baseline FSR than mixed or white portions, while HU consistently depressed protein synthesis across all fiber types. In conclusion, although intermittent ambulation increased protein synthesis during HU, it was not sufficient to prevent overall muscle mass loss. These findings emphasize the importance of both the duration and intensity of loading in preserving skeletal muscle during periods of disuse.</div></div>\",\"PeriodicalId\":8771,\"journal\":{\"name\":\"Biochemistry and Biophysics Reports\",\"volume\":\"43 \",\"pages\":\"Article 102100\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Biophysics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405580825001876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825001876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Brief ambulatory reloading elevates muscle protein synthesis but does not prevent disuse atrophy in hindlimb-unloaded rats
Disuse muscle atrophy remains a major challenge in contexts such as prolonged bed rest or microgravity. Here, we investigated whether brief bouts of ambulatory reloading could attenuate skeletal muscle atrophy caused by five days of hindlimb unloading (HU) in rats. Using a deuterium oxide tracer, we measured integrative protein synthesis (fractional synthesis rate, FSR) in the soleus, plantaris, and gastrocnemius muscles, including distinct portions of the muscle that are composed mostly of red, white, and mixed fibers. HU significantly reduced both muscle mass and FSR in the predominantly slow-twitch soleus and in the predominantly fast gastrocnemius. Intermittent ambulatory reloading (HU + AR) partially restored FSR in the soleus and gastrocnemius but did not recover soleus or gastrocnemius mass to control levels. The plantaris muscle showed no differences in mass or FSR among groups, suggesting muscle-specific responses to unloading and reloading. Fiber-type analyses revealed that portions of the gastrocnemius that are mostly red fibers had higher baseline FSR than mixed or white portions, while HU consistently depressed protein synthesis across all fiber types. In conclusion, although intermittent ambulation increased protein synthesis during HU, it was not sufficient to prevent overall muscle mass loss. These findings emphasize the importance of both the duration and intensity of loading in preserving skeletal muscle during periods of disuse.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.