水热合成二硫化钼纳米片:结构、电学和基于天线的气敏特性

IF 4.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Onur Alev , Mohammad Mahmudul Hasan , Emel Tuğba Ertuğrul , Selçuk Birdoğan , Okan Özdemir , Eda Goldenberg , Michael Cheffena
{"title":"水热合成二硫化钼纳米片:结构、电学和基于天线的气敏特性","authors":"Onur Alev ,&nbsp;Mohammad Mahmudul Hasan ,&nbsp;Emel Tuğba Ertuğrul ,&nbsp;Selçuk Birdoğan ,&nbsp;Okan Özdemir ,&nbsp;Eda Goldenberg ,&nbsp;Michael Cheffena","doi":"10.1016/j.sna.2025.116756","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for real-time, low-power, and selective detection of volatile organic compounds (VOCs) at room temperature (RT) presents a significant challenge for environmental monitoring. To address this, we propose a gas sensor platform that integrates molybdenum disulfide (MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>)-based nanostructures with an RF antenna transducer exhibiting wireless-like capabilities, offering a promising approach for next-generation sensing technologies. MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> nanostructures were synthesized via a facile hydrothermal method, and the impact of reaction duration on their structural and electrical properties was systematically investigated. The resulting nanostructures exhibited nanoflake (NF) morphology with an interatomic distance of 267 pm. X-ray diffraction confirmed the 2H–MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> phase, with improved crystallinity observed at longer reaction durations. FTIR analysis revealed Mo–S and Mo–O bonding, suggesting the coexistence of oxide phases alongside MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. X-ray photoelectron spectroscopy further confirmed the presence of MoO<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, MoO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, with phase ratios influenced by reaction duration. The synthesized materials were applied as sensing layers on dual-functional antenna transducers compatible with wireless sensor networks. The MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-based NF-coated sensor exhibited selective methanol detection in the 1000–8000 ppm range at RT, outperforming responses to other VOCs. Sensors with a higher MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/MoO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> ratio showed a robust, linear response to methanol, achieving a detection limit of 57.5 ppm with excellent 30-day stability. Principal component analysis confirmed strong selectivity towards methanol, demonstrating effective VOC discrimination. This study highlights the critical role of the hydrothermal phase composition in tuning electrical performance and enhancing VOC detection for wireless sensing platforms based on RF antennas.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"393 ","pages":"Article 116756"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermally synthesized molybdenum disulfide nanoflakes: structural, electrical, and antenna-based gas sensing characteristics\",\"authors\":\"Onur Alev ,&nbsp;Mohammad Mahmudul Hasan ,&nbsp;Emel Tuğba Ertuğrul ,&nbsp;Selçuk Birdoğan ,&nbsp;Okan Özdemir ,&nbsp;Eda Goldenberg ,&nbsp;Michael Cheffena\",\"doi\":\"10.1016/j.sna.2025.116756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing demand for real-time, low-power, and selective detection of volatile organic compounds (VOCs) at room temperature (RT) presents a significant challenge for environmental monitoring. To address this, we propose a gas sensor platform that integrates molybdenum disulfide (MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>)-based nanostructures with an RF antenna transducer exhibiting wireless-like capabilities, offering a promising approach for next-generation sensing technologies. MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> nanostructures were synthesized via a facile hydrothermal method, and the impact of reaction duration on their structural and electrical properties was systematically investigated. The resulting nanostructures exhibited nanoflake (NF) morphology with an interatomic distance of 267 pm. X-ray diffraction confirmed the 2H–MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> phase, with improved crystallinity observed at longer reaction durations. FTIR analysis revealed Mo–S and Mo–O bonding, suggesting the coexistence of oxide phases alongside MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. X-ray photoelectron spectroscopy further confirmed the presence of MoO<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, MoO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, with phase ratios influenced by reaction duration. The synthesized materials were applied as sensing layers on dual-functional antenna transducers compatible with wireless sensor networks. The MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-based NF-coated sensor exhibited selective methanol detection in the 1000–8000 ppm range at RT, outperforming responses to other VOCs. Sensors with a higher MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/MoO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> ratio showed a robust, linear response to methanol, achieving a detection limit of 57.5 ppm with excellent 30-day stability. Principal component analysis confirmed strong selectivity towards methanol, demonstrating effective VOC discrimination. This study highlights the critical role of the hydrothermal phase composition in tuning electrical performance and enhancing VOC detection for wireless sensing platforms based on RF antennas.</div></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":\"393 \",\"pages\":\"Article 116756\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092442472500562X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092442472500562X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对室温下挥发性有机化合物(VOCs)实时、低功耗和选择性检测的需求日益增长,这对环境监测提出了重大挑战。为了解决这个问题,我们提出了一种气体传感器平台,该平台将基于二硫化钼(MoS2)的纳米结构与具有无线功能的射频天线传感器集成在一起,为下一代传感技术提供了一种有前途的方法。采用水热法合成了二硫化钼纳米结构,系统研究了反应时间对其结构和电性能的影响。所得纳米结构表现为纳米片(NF)形态,原子间距离为267 pm。x射线衍射证实了2H-MoS2相,在较长的反应持续时间下观察到结晶度的改善。FTIR分析显示Mo-S和Mo-O成键,表明氧化物相与MoS2共存。x射线光电子能谱进一步证实了MoO3、MoO2和MoS2的存在,其相比受反应时间的影响。将合成材料作为传感层应用于兼容无线传感器网络的双功能天线传感器上。基于mos2的nf涂层传感器在室温下可以在1000 - 8000ppm范围内选择性检测甲醇,优于其他VOCs的响应。具有较高MoS2/MoOx比率的传感器对甲醇表现出稳健的线性响应,达到57.5 ppm的检测限,具有出色的30天稳定性。主成分分析证实了对甲醇的强选择性,证明了有效的VOC识别。本研究强调了热液相组成在调整基于射频天线的无线传感平台的电气性能和增强VOC检测方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrothermally synthesized molybdenum disulfide nanoflakes: structural, electrical, and antenna-based gas sensing characteristics

Hydrothermally synthesized molybdenum disulfide nanoflakes: structural, electrical, and antenna-based gas sensing characteristics
The growing demand for real-time, low-power, and selective detection of volatile organic compounds (VOCs) at room temperature (RT) presents a significant challenge for environmental monitoring. To address this, we propose a gas sensor platform that integrates molybdenum disulfide (MoS2)-based nanostructures with an RF antenna transducer exhibiting wireless-like capabilities, offering a promising approach for next-generation sensing technologies. MoS2 nanostructures were synthesized via a facile hydrothermal method, and the impact of reaction duration on their structural and electrical properties was systematically investigated. The resulting nanostructures exhibited nanoflake (NF) morphology with an interatomic distance of 267 pm. X-ray diffraction confirmed the 2H–MoS2 phase, with improved crystallinity observed at longer reaction durations. FTIR analysis revealed Mo–S and Mo–O bonding, suggesting the coexistence of oxide phases alongside MoS2. X-ray photoelectron spectroscopy further confirmed the presence of MoO3, MoO2, and MoS2, with phase ratios influenced by reaction duration. The synthesized materials were applied as sensing layers on dual-functional antenna transducers compatible with wireless sensor networks. The MoS2-based NF-coated sensor exhibited selective methanol detection in the 1000–8000 ppm range at RT, outperforming responses to other VOCs. Sensors with a higher MoS2/MoOx ratio showed a robust, linear response to methanol, achieving a detection limit of 57.5 ppm with excellent 30-day stability. Principal component analysis confirmed strong selectivity towards methanol, demonstrating effective VOC discrimination. This study highlights the critical role of the hydrothermal phase composition in tuning electrical performance and enhancing VOC detection for wireless sensing platforms based on RF antennas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信