{"title":"基于仿真的高效水下传感器网络鲁棒优化设计框架","authors":"Ozhan Eren , Aysegul Altin-Kayhan","doi":"10.1016/j.adhoc.2025.103933","DOIUrl":null,"url":null,"abstract":"<div><div>Given that data generation rates of sensors might deviate from what is anticipated during the configuration phase due to several reasons such as event-driven data spikes, dynamic environmental conditions, propagation delay and data buffering, etc., designing robust transmission schemes is pivotal for Underwater Wireless Sensor Networks (UWSNs). Despite advances in underwater technologies, UWSN optimization under traffic uncertainty remains underexplored. This paper presents a novel simulation-informed robust optimization framework for designing energy-efficient UWSNs. We begin with a comprehensive review of the literature that addresses uncertainty in system parameters for wireless network design, followed by an analysis of research focused on modeling the motion of underwater objects. Then, we propose simulating an intrusion detection environment that includes moving targets, such as autonomous underwater vehicles and submarines navigating along 3D routes. To improve simulation accuracy, real bathymetric data is used to define the interactions between system elements including vehicles, sensors, and ocean topography. Then, the expected data generation rates of sensors and the corresponding admissible intervals are determined using the results from multiple simulation runs. The resulting data set is used to determine and conduct comprehensive analyses on optimal deterministic and robust configurations, where the maximum battery allocated to a sensor is minimized. The scenario-based comparison of network functional time between deterministic and robust configurations indicates that the robust design substantially outperforms the deterministic configuration across all data rate realizations, even at the lowest level of deviation from the expectations.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"178 ","pages":"Article 103933"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simulation-informed robust optimization framework for the design of energy efficient underwater sensor networks\",\"authors\":\"Ozhan Eren , Aysegul Altin-Kayhan\",\"doi\":\"10.1016/j.adhoc.2025.103933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given that data generation rates of sensors might deviate from what is anticipated during the configuration phase due to several reasons such as event-driven data spikes, dynamic environmental conditions, propagation delay and data buffering, etc., designing robust transmission schemes is pivotal for Underwater Wireless Sensor Networks (UWSNs). Despite advances in underwater technologies, UWSN optimization under traffic uncertainty remains underexplored. This paper presents a novel simulation-informed robust optimization framework for designing energy-efficient UWSNs. We begin with a comprehensive review of the literature that addresses uncertainty in system parameters for wireless network design, followed by an analysis of research focused on modeling the motion of underwater objects. Then, we propose simulating an intrusion detection environment that includes moving targets, such as autonomous underwater vehicles and submarines navigating along 3D routes. To improve simulation accuracy, real bathymetric data is used to define the interactions between system elements including vehicles, sensors, and ocean topography. Then, the expected data generation rates of sensors and the corresponding admissible intervals are determined using the results from multiple simulation runs. The resulting data set is used to determine and conduct comprehensive analyses on optimal deterministic and robust configurations, where the maximum battery allocated to a sensor is minimized. The scenario-based comparison of network functional time between deterministic and robust configurations indicates that the robust design substantially outperforms the deterministic configuration across all data rate realizations, even at the lowest level of deviation from the expectations.</div></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":\"178 \",\"pages\":\"Article 103933\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870525001817\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870525001817","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A simulation-informed robust optimization framework for the design of energy efficient underwater sensor networks
Given that data generation rates of sensors might deviate from what is anticipated during the configuration phase due to several reasons such as event-driven data spikes, dynamic environmental conditions, propagation delay and data buffering, etc., designing robust transmission schemes is pivotal for Underwater Wireless Sensor Networks (UWSNs). Despite advances in underwater technologies, UWSN optimization under traffic uncertainty remains underexplored. This paper presents a novel simulation-informed robust optimization framework for designing energy-efficient UWSNs. We begin with a comprehensive review of the literature that addresses uncertainty in system parameters for wireless network design, followed by an analysis of research focused on modeling the motion of underwater objects. Then, we propose simulating an intrusion detection environment that includes moving targets, such as autonomous underwater vehicles and submarines navigating along 3D routes. To improve simulation accuracy, real bathymetric data is used to define the interactions between system elements including vehicles, sensors, and ocean topography. Then, the expected data generation rates of sensors and the corresponding admissible intervals are determined using the results from multiple simulation runs. The resulting data set is used to determine and conduct comprehensive analyses on optimal deterministic and robust configurations, where the maximum battery allocated to a sensor is minimized. The scenario-based comparison of network functional time between deterministic and robust configurations indicates that the robust design substantially outperforms the deterministic configuration across all data rate realizations, even at the lowest level of deviation from the expectations.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.