5,6,5-熔融三环共轭体系:平衡稳定性和能量的有效策略

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yuan Qi, Linan Zhang, Shuaijie Jiang, Shuliang Liu, Huichao Ma, Guang Wu and Qiuhan Lin*, 
{"title":"5,6,5-熔融三环共轭体系:平衡稳定性和能量的有效策略","authors":"Yuan Qi,&nbsp;Linan Zhang,&nbsp;Shuaijie Jiang,&nbsp;Shuliang Liu,&nbsp;Huichao Ma,&nbsp;Guang Wu and Qiuhan Lin*,&nbsp;","doi":"10.1021/acs.cgd.4c0159310.1021/acs.cgd.4c01593","DOIUrl":null,"url":null,"abstract":"<p >The field of energetic materials should prioritize the development of energy-rich backbones that possess both high energy and low sensitivity, in addition to exhibiting exceptional density and performance characteristics. For this purpose, three new heat-resistant and low-sensitivity energetic compounds with [5,6,5] fused ring skeletons were developed in this study: 9<i>H</i>-tetrazolo[1,5-<i>b</i>][1,2,3]triazolo[4,5-<i>d</i>]pyrimidin-6-ol (<b>3</b>), 9<i>H</i>-tetrazolo[1,5-<i>b</i>][1,2,3]triazolo[4,5-<i>d</i>]pyrimidin-6-amine (<b>4</b>), and 8-azino-8<i>H</i>-imidazo[4,5-<i>d</i>]tetrazolo[1,5-<i>b</i>]pyridazine-6-amine (<b>5</b>). It was determined through single-crystal X-ray diffraction and theoretical analysis that these three compounds exhibited low sensitivity (IS &gt; 20 J and FS &gt; 240 N). Their molecules are planar with abundant intermolecular hydrogen bonds and strong π–π interactions between the molecular layers, all of which account for their low sensitivity. At the same time, <b>3</b> (<i>D</i> = 7734 m·s<sup>–1</sup>, <i>P</i> = 22.4 GPa), <b>4</b> (<i>D</i> = 8075 m·s<sup>–1</sup>, <i>P</i> = 23.5 GPa), and <b>5</b> (<i>D</i> = 7889 m·s<sup>–1</sup>, <i>P</i> = 22.2 GPa) have higher detonation performance than the conventional explosives HNS (<i>D</i> = 7612 m·s<sup>–1</sup>, <i>P</i> = 24.3 GPa) and TNT (<i>D</i> = 6881 m·s<sup>–1</sup>, <i>P</i> = 19.5 GPa). <b>4</b> has a maximum thermal decomposition temperature (<i>T</i> = 318 °C) comparable to that of the heat-resistant explosive HNS (<i>T</i> = 318 °C). The research findings suggest that compound <b>4</b> exhibits potential as a heat-resistant and low-sensitivity explosive, while compounds <b>3</b> and <b>5</b> demonstrate the potential to be low-sensitivity explosives.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 12","pages":"4151–4158 4151–4158"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"5,6,5-Melting Tricyclic Conjugated System: An Effective Strategy for Balancing Stability and Energy\",\"authors\":\"Yuan Qi,&nbsp;Linan Zhang,&nbsp;Shuaijie Jiang,&nbsp;Shuliang Liu,&nbsp;Huichao Ma,&nbsp;Guang Wu and Qiuhan Lin*,&nbsp;\",\"doi\":\"10.1021/acs.cgd.4c0159310.1021/acs.cgd.4c01593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The field of energetic materials should prioritize the development of energy-rich backbones that possess both high energy and low sensitivity, in addition to exhibiting exceptional density and performance characteristics. For this purpose, three new heat-resistant and low-sensitivity energetic compounds with [5,6,5] fused ring skeletons were developed in this study: 9<i>H</i>-tetrazolo[1,5-<i>b</i>][1,2,3]triazolo[4,5-<i>d</i>]pyrimidin-6-ol (<b>3</b>), 9<i>H</i>-tetrazolo[1,5-<i>b</i>][1,2,3]triazolo[4,5-<i>d</i>]pyrimidin-6-amine (<b>4</b>), and 8-azino-8<i>H</i>-imidazo[4,5-<i>d</i>]tetrazolo[1,5-<i>b</i>]pyridazine-6-amine (<b>5</b>). It was determined through single-crystal X-ray diffraction and theoretical analysis that these three compounds exhibited low sensitivity (IS &gt; 20 J and FS &gt; 240 N). Their molecules are planar with abundant intermolecular hydrogen bonds and strong π–π interactions between the molecular layers, all of which account for their low sensitivity. At the same time, <b>3</b> (<i>D</i> = 7734 m·s<sup>–1</sup>, <i>P</i> = 22.4 GPa), <b>4</b> (<i>D</i> = 8075 m·s<sup>–1</sup>, <i>P</i> = 23.5 GPa), and <b>5</b> (<i>D</i> = 7889 m·s<sup>–1</sup>, <i>P</i> = 22.2 GPa) have higher detonation performance than the conventional explosives HNS (<i>D</i> = 7612 m·s<sup>–1</sup>, <i>P</i> = 24.3 GPa) and TNT (<i>D</i> = 6881 m·s<sup>–1</sup>, <i>P</i> = 19.5 GPa). <b>4</b> has a maximum thermal decomposition temperature (<i>T</i> = 318 °C) comparable to that of the heat-resistant explosive HNS (<i>T</i> = 318 °C). The research findings suggest that compound <b>4</b> exhibits potential as a heat-resistant and low-sensitivity explosive, while compounds <b>3</b> and <b>5</b> demonstrate the potential to be low-sensitivity explosives.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"25 12\",\"pages\":\"4151–4158 4151–4158\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01593\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01593","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

含能材料领域应优先发展高能量、低灵敏度、具有特殊密度和性能特点的高能量骨干材料。为此,本研究开发了三种新的具有[5,6,5]熔接环骨架的耐热低灵敏度含能化合物:9h -四唑[1,5-b][1,2,3]三唑[4,5- b]嘧啶-6-胺(3),9h -四唑[1,5-b]三唑[4,5-d]嘧啶-6-胺(4)和8-氮基- 8h -咪唑[4,5-d]四唑[1,5-b]嘧啶-6-胺(5)。通过单晶x射线衍射和理论分析确定,这三种化合物具有低灵敏度(IS >;20 J和FS >;240 N)。它们的分子呈平面状,具有丰富的分子间氢键和分子层间强的π -π相互作用,这些都是它们灵敏度低的原因。同时,3 (D = 7734 m·s-1, P = 22.4 GPa)、4 (D = 8075 m·s-1, P = 23.5 GPa)、5 (D = 7889 m·s-1, P = 22.2 GPa)的爆轰性能均高于常规炸药HNS (D = 7612 m·s-1, P = 24.3 GPa)和TNT (D = 6881 m·s-1, P = 19.5 GPa)。4的最高热分解温度(T = 318℃)与耐热炸药HNS (T = 318℃)相当。研究结果表明,化合物4具有耐热低敏炸药的潜力,化合物3和化合物5具有低敏炸药的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
5,6,5-Melting Tricyclic Conjugated System: An Effective Strategy for Balancing Stability and Energy

The field of energetic materials should prioritize the development of energy-rich backbones that possess both high energy and low sensitivity, in addition to exhibiting exceptional density and performance characteristics. For this purpose, three new heat-resistant and low-sensitivity energetic compounds with [5,6,5] fused ring skeletons were developed in this study: 9H-tetrazolo[1,5-b][1,2,3]triazolo[4,5-d]pyrimidin-6-ol (3), 9H-tetrazolo[1,5-b][1,2,3]triazolo[4,5-d]pyrimidin-6-amine (4), and 8-azino-8H-imidazo[4,5-d]tetrazolo[1,5-b]pyridazine-6-amine (5). It was determined through single-crystal X-ray diffraction and theoretical analysis that these three compounds exhibited low sensitivity (IS > 20 J and FS > 240 N). Their molecules are planar with abundant intermolecular hydrogen bonds and strong π–π interactions between the molecular layers, all of which account for their low sensitivity. At the same time, 3 (D = 7734 m·s–1, P = 22.4 GPa), 4 (D = 8075 m·s–1, P = 23.5 GPa), and 5 (D = 7889 m·s–1, P = 22.2 GPa) have higher detonation performance than the conventional explosives HNS (D = 7612 m·s–1, P = 24.3 GPa) and TNT (D = 6881 m·s–1, P = 19.5 GPa). 4 has a maximum thermal decomposition temperature (T = 318 °C) comparable to that of the heat-resistant explosive HNS (T = 318 °C). The research findings suggest that compound 4 exhibits potential as a heat-resistant and low-sensitivity explosive, while compounds 3 and 5 demonstrate the potential to be low-sensitivity explosives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信