ZnO纳米棒间位钝化诱导La压缩应变增强载流子输运机制

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nurul Aliyah Zainal Abidin, Faiz Arith*, Ahmad Syahiman Mohd Shah, Sami Ramadan, Ahmad Nizamuddin Muhammad Mustafa, Nur Ezyanie Safie, Mohd Asyadi Azam, Marzaini Rashid and Puvaneswaran Chelvanathan, 
{"title":"ZnO纳米棒间位钝化诱导La压缩应变增强载流子输运机制","authors":"Nurul Aliyah Zainal Abidin,&nbsp;Faiz Arith*,&nbsp;Ahmad Syahiman Mohd Shah,&nbsp;Sami Ramadan,&nbsp;Ahmad Nizamuddin Muhammad Mustafa,&nbsp;Nur Ezyanie Safie,&nbsp;Mohd Asyadi Azam,&nbsp;Marzaini Rashid and Puvaneswaran Chelvanathan,&nbsp;","doi":"10.1021/acs.cgd.4c0135910.1021/acs.cgd.4c01359","DOIUrl":null,"url":null,"abstract":"<p >Zinc oxide (ZnO) nanorods (NRs) doped with lanthanum (La) were synthesized via a low-temperature 90 °C hydrothermal method to investigate defect passivation and charge transport enhancement. Structural and spectroscopic characterization reveals that La<sup>3+</sup> preferentially adsorbs at ZnO surfaces and grain boundaries, inducing compressive strain that suppresses defect formation without lattice substitution. Morphological studies demonstrate improved surface uniformity in La-doped NRs, while Raman spectroscopy shows reduced defect-related modes at 1 mol % La doping. XPS analysis confirms interfacial La<sup>3+</sup> localization through characteristic 3.5 eV satellite features and minimal binding energy shifts of merely 0.2 eV. The optimal 1 mol % La-doped ZnO exhibits a conductivity of 5.46 S/m at 3.25 eV bandgap with a 4.6% improvement over high-temperature (&gt;300 °C) synthesized La-ZnO references. While pristine ZnO shows higher absolute conductivity, these results demonstrate that low-temperature hydrothermal processing can achieve comparable electronic property enhancement to conventional high-temperature methods. This work provides fundamental insights into interfacial doping strategies for ZnO-based materials, with potential implications for optoelectronic applications.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 12","pages":"4126–4139 4126–4139"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compressive Strain of La Induced in ZnO Nanorods by Interstitial Site Passivation for Enhanced Charge Carrier Transport Mechanism\",\"authors\":\"Nurul Aliyah Zainal Abidin,&nbsp;Faiz Arith*,&nbsp;Ahmad Syahiman Mohd Shah,&nbsp;Sami Ramadan,&nbsp;Ahmad Nizamuddin Muhammad Mustafa,&nbsp;Nur Ezyanie Safie,&nbsp;Mohd Asyadi Azam,&nbsp;Marzaini Rashid and Puvaneswaran Chelvanathan,&nbsp;\",\"doi\":\"10.1021/acs.cgd.4c0135910.1021/acs.cgd.4c01359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Zinc oxide (ZnO) nanorods (NRs) doped with lanthanum (La) were synthesized via a low-temperature 90 °C hydrothermal method to investigate defect passivation and charge transport enhancement. Structural and spectroscopic characterization reveals that La<sup>3+</sup> preferentially adsorbs at ZnO surfaces and grain boundaries, inducing compressive strain that suppresses defect formation without lattice substitution. Morphological studies demonstrate improved surface uniformity in La-doped NRs, while Raman spectroscopy shows reduced defect-related modes at 1 mol % La doping. XPS analysis confirms interfacial La<sup>3+</sup> localization through characteristic 3.5 eV satellite features and minimal binding energy shifts of merely 0.2 eV. The optimal 1 mol % La-doped ZnO exhibits a conductivity of 5.46 S/m at 3.25 eV bandgap with a 4.6% improvement over high-temperature (&gt;300 °C) synthesized La-ZnO references. While pristine ZnO shows higher absolute conductivity, these results demonstrate that low-temperature hydrothermal processing can achieve comparable electronic property enhancement to conventional high-temperature methods. This work provides fundamental insights into interfacial doping strategies for ZnO-based materials, with potential implications for optoelectronic applications.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"25 12\",\"pages\":\"4126–4139 4126–4139\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01359\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01359","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用90℃低温水热法制备了掺杂镧的氧化锌纳米棒,研究了氧化锌纳米棒的缺陷钝化和电荷输运增强。结构和光谱表征表明,La3+优先吸附在ZnO表面和晶界,产生压缩应变,抑制缺陷形成,而没有晶格取代。形态学研究表明,La掺杂的核磁共振表面均匀性得到改善,而拉曼光谱显示,在1 mol %的La掺杂下,缺陷相关模式减少。XPS分析通过3.5 eV的卫星特征和最小的结合能位移(仅为0.2 eV)证实了界面La3+的定位。在3.25 eV带隙下,最佳的1 mol % la掺杂ZnO的电导率为5.46 S/m,比高温(>300℃)合成的La-ZnO参考文献提高了4.6%。虽然原始ZnO表现出更高的绝对电导率,但这些结果表明低温水热处理可以达到与传统高温方法相当的电子性能增强。这项工作为zno基材料的界面掺杂策略提供了基本的见解,对光电应用具有潜在的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressive Strain of La Induced in ZnO Nanorods by Interstitial Site Passivation for Enhanced Charge Carrier Transport Mechanism

Zinc oxide (ZnO) nanorods (NRs) doped with lanthanum (La) were synthesized via a low-temperature 90 °C hydrothermal method to investigate defect passivation and charge transport enhancement. Structural and spectroscopic characterization reveals that La3+ preferentially adsorbs at ZnO surfaces and grain boundaries, inducing compressive strain that suppresses defect formation without lattice substitution. Morphological studies demonstrate improved surface uniformity in La-doped NRs, while Raman spectroscopy shows reduced defect-related modes at 1 mol % La doping. XPS analysis confirms interfacial La3+ localization through characteristic 3.5 eV satellite features and minimal binding energy shifts of merely 0.2 eV. The optimal 1 mol % La-doped ZnO exhibits a conductivity of 5.46 S/m at 3.25 eV bandgap with a 4.6% improvement over high-temperature (>300 °C) synthesized La-ZnO references. While pristine ZnO shows higher absolute conductivity, these results demonstrate that low-temperature hydrothermal processing can achieve comparable electronic property enhancement to conventional high-temperature methods. This work provides fundamental insights into interfacial doping strategies for ZnO-based materials, with potential implications for optoelectronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信