利用废弃物绿色合成假相干氟正极材料

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yue Ma, Yingnan Zhao, Xianggang Zhou, Yingqi Li*, Ruiqian Gu, Yumeng Li, Rui-Qi Yao, Hang Shi, Tong-Hui Wang, Gao-Feng Han*, Xing-You Lang* and Qing Jiang*, 
{"title":"利用废弃物绿色合成假相干氟正极材料","authors":"Yue Ma,&nbsp;Yingnan Zhao,&nbsp;Xianggang Zhou,&nbsp;Yingqi Li*,&nbsp;Ruiqian Gu,&nbsp;Yumeng Li,&nbsp;Rui-Qi Yao,&nbsp;Hang Shi,&nbsp;Tong-Hui Wang,&nbsp;Gao-Feng Han*,&nbsp;Xing-You Lang* and Qing Jiang*,&nbsp;","doi":"10.1021/acs.nanolett.5c0048910.1021/acs.nanolett.5c00489","DOIUrl":null,"url":null,"abstract":"<p >Due to fluorine’s high electronegativity, which facilitates the highest discharge plateau and exceptional energy density, transition metal fluorides (TMFs) are considered one of the most promising cathode materials for lithium-ion batteries. However, the complexity and toxicity of the synthesis process as well as the durability of TMFs hinder their wide application. Herein, we present a green synthesis strategy of iron fluorides (FeF<i><sub><i>x</i></sub></i>), utilizing recycled polytetrafluoroethylene as fluorine source, combined with Fe powder through mechanochemical ball-milling at ambient conditions (35 °C). Benefiting from the coupling reaction between pseudocoherent FeF<i><sub><i>x</i></sub></i> and semi-ionic CF<i><sub><i>y</i></sub></i>, the resulting FeF<i><sub><i>x</i></sub></i>-CF<i><sub><i>y</i></sub></i> cathode delivers an impressive capacity of 240.0 mAh g<sup>–1</sup> and maintains 76.2% after 2000 cycles at 1C, obviously surpassing the prevailing LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> and LiFePO<sub>4</sub> cathodes. This work not only introduces a sustainable strategy for synthesizing high-performance and high value-added fluorides under mild conditions but also contributes to waste recycling.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 24","pages":"9543–9550 9543–9550"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Synthesis of Pseudocoherent Fluoride Cathode Materials from Wastes\",\"authors\":\"Yue Ma,&nbsp;Yingnan Zhao,&nbsp;Xianggang Zhou,&nbsp;Yingqi Li*,&nbsp;Ruiqian Gu,&nbsp;Yumeng Li,&nbsp;Rui-Qi Yao,&nbsp;Hang Shi,&nbsp;Tong-Hui Wang,&nbsp;Gao-Feng Han*,&nbsp;Xing-You Lang* and Qing Jiang*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c0048910.1021/acs.nanolett.5c00489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Due to fluorine’s high electronegativity, which facilitates the highest discharge plateau and exceptional energy density, transition metal fluorides (TMFs) are considered one of the most promising cathode materials for lithium-ion batteries. However, the complexity and toxicity of the synthesis process as well as the durability of TMFs hinder their wide application. Herein, we present a green synthesis strategy of iron fluorides (FeF<i><sub><i>x</i></sub></i>), utilizing recycled polytetrafluoroethylene as fluorine source, combined with Fe powder through mechanochemical ball-milling at ambient conditions (35 °C). Benefiting from the coupling reaction between pseudocoherent FeF<i><sub><i>x</i></sub></i> and semi-ionic CF<i><sub><i>y</i></sub></i>, the resulting FeF<i><sub><i>x</i></sub></i>-CF<i><sub><i>y</i></sub></i> cathode delivers an impressive capacity of 240.0 mAh g<sup>–1</sup> and maintains 76.2% after 2000 cycles at 1C, obviously surpassing the prevailing LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> and LiFePO<sub>4</sub> cathodes. This work not only introduces a sustainable strategy for synthesizing high-performance and high value-added fluorides under mild conditions but also contributes to waste recycling.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 24\",\"pages\":\"9543–9550 9543–9550\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00489\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00489","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于氟的高电负性,有利于最高的放电平台和特殊的能量密度,过渡金属氟化物(TMFs)被认为是锂离子电池最有前途的正极材料之一。然而,合成过程的复杂性和毒性以及TMFs的耐久性阻碍了它们的广泛应用。在此,我们提出了一种绿色合成氟化铁(FeFx)的策略,利用回收的聚四氟乙烯作为氟源,在室温条件下(35°C)通过机械化学球磨结合铁粉。利用假相干FeFx和半离子型CFy之间的耦合反应,得到的FeFx-CFy阴极的容量达到240.0 mAh g-1,在1C下循环2000次后保持76.2%,明显超过了现有的LiNi0.8Co0.1Mn0.1O2和LiFePO4阴极。这项工作不仅介绍了在温和条件下合成高性能和高附加值氟化物的可持续战略,而且有助于废物回收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Green Synthesis of Pseudocoherent Fluoride Cathode Materials from Wastes

Green Synthesis of Pseudocoherent Fluoride Cathode Materials from Wastes

Due to fluorine’s high electronegativity, which facilitates the highest discharge plateau and exceptional energy density, transition metal fluorides (TMFs) are considered one of the most promising cathode materials for lithium-ion batteries. However, the complexity and toxicity of the synthesis process as well as the durability of TMFs hinder their wide application. Herein, we present a green synthesis strategy of iron fluorides (FeFx), utilizing recycled polytetrafluoroethylene as fluorine source, combined with Fe powder through mechanochemical ball-milling at ambient conditions (35 °C). Benefiting from the coupling reaction between pseudocoherent FeFx and semi-ionic CFy, the resulting FeFx-CFy cathode delivers an impressive capacity of 240.0 mAh g–1 and maintains 76.2% after 2000 cycles at 1C, obviously surpassing the prevailing LiNi0.8Co0.1Mn0.1O2 and LiFePO4 cathodes. This work not only introduces a sustainable strategy for synthesizing high-performance and high value-added fluorides under mild conditions but also contributes to waste recycling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信