Petri Lassila*, Thomas Zinn, Jere Hyvönen, Enriqueta Noriega Benitez, Paavo Penttilä, Ari Salmi and Fabio Valoppi*,
{"title":"超声驻波诱导声导入对单甘油酯油凝胶结构的影响","authors":"Petri Lassila*, Thomas Zinn, Jere Hyvönen, Enriqueta Noriega Benitez, Paavo Penttilä, Ari Salmi and Fabio Valoppi*, ","doi":"10.1021/acs.cgd.5c0029110.1021/acs.cgd.5c00291","DOIUrl":null,"url":null,"abstract":"<p >Ultrasound standing waves (USW) produce a force capable of displacing micrometer-sized free-flowing particles in a fluid, wherein this phenomenon is also referred to as acoustophoresis. However, the effect of acoustophoresis on dynamically changing and growing crystal networks is unclear. An example of such a system are monoglyceride (MG)-based oleogels, which are free-flowing lipids (e.g., vegetable oils) structured with a lipid-crystal network. In this work, we use MG oleogels as an example system to investigate the acoustophoretic effect on the structuration of a growing crystal network. For this purpose, multifaceted characterization is conducted utilizing optical and coded excitation scanning acoustic microscopy as well as small-angle X-ray scattering, respectively. The optical microscopy results show that USW produces local density differences of the structuring crystalline material and induces the orientation of the MG platelets. X-ray diffraction measurements confirm these findings and show a 23% average increase in MG platelet correlation length, which can be linked to platelet thickness, as well as an increase in the MG nanoplatelet surface smoothness. These findings produce a foundation for better understanding the effect of acoustophoresis in dynamically developing lipid-based materials and illuminate the mechanical changes that arise because of USW treatment.</p><p >Ultrasound standing waves (USW) generate forces displacing micrometer-sized particles in fluid─a phenomenon called acoustophoresis. Its impact on evolving crystal networks is unexplored. Using monoglyceride oleogels, we analyze USW effects on crystal growth via optical/acoustic microscopy and SAXS. Results reveal USW-induced density variations, platelet alignment, 23% increase in correlation length, and enhanced surface roughness, elucidating mechanical changes in lipid-based materials.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 12","pages":"4394–4404 4394–4404"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.cgd.5c00291","citationCount":"0","resultStr":"{\"title\":\"Effect of Ultrasound Standing Wave-Induced Acoustophoresis in Monoglyceride Oleogel Structuration\",\"authors\":\"Petri Lassila*, Thomas Zinn, Jere Hyvönen, Enriqueta Noriega Benitez, Paavo Penttilä, Ari Salmi and Fabio Valoppi*, \",\"doi\":\"10.1021/acs.cgd.5c0029110.1021/acs.cgd.5c00291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ultrasound standing waves (USW) produce a force capable of displacing micrometer-sized free-flowing particles in a fluid, wherein this phenomenon is also referred to as acoustophoresis. However, the effect of acoustophoresis on dynamically changing and growing crystal networks is unclear. An example of such a system are monoglyceride (MG)-based oleogels, which are free-flowing lipids (e.g., vegetable oils) structured with a lipid-crystal network. In this work, we use MG oleogels as an example system to investigate the acoustophoretic effect on the structuration of a growing crystal network. For this purpose, multifaceted characterization is conducted utilizing optical and coded excitation scanning acoustic microscopy as well as small-angle X-ray scattering, respectively. The optical microscopy results show that USW produces local density differences of the structuring crystalline material and induces the orientation of the MG platelets. X-ray diffraction measurements confirm these findings and show a 23% average increase in MG platelet correlation length, which can be linked to platelet thickness, as well as an increase in the MG nanoplatelet surface smoothness. These findings produce a foundation for better understanding the effect of acoustophoresis in dynamically developing lipid-based materials and illuminate the mechanical changes that arise because of USW treatment.</p><p >Ultrasound standing waves (USW) generate forces displacing micrometer-sized particles in fluid─a phenomenon called acoustophoresis. Its impact on evolving crystal networks is unexplored. Using monoglyceride oleogels, we analyze USW effects on crystal growth via optical/acoustic microscopy and SAXS. Results reveal USW-induced density variations, platelet alignment, 23% increase in correlation length, and enhanced surface roughness, elucidating mechanical changes in lipid-based materials.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"25 12\",\"pages\":\"4394–4404 4394–4404\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.cgd.5c00291\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00291\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00291","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Ultrasound Standing Wave-Induced Acoustophoresis in Monoglyceride Oleogel Structuration
Ultrasound standing waves (USW) produce a force capable of displacing micrometer-sized free-flowing particles in a fluid, wherein this phenomenon is also referred to as acoustophoresis. However, the effect of acoustophoresis on dynamically changing and growing crystal networks is unclear. An example of such a system are monoglyceride (MG)-based oleogels, which are free-flowing lipids (e.g., vegetable oils) structured with a lipid-crystal network. In this work, we use MG oleogels as an example system to investigate the acoustophoretic effect on the structuration of a growing crystal network. For this purpose, multifaceted characterization is conducted utilizing optical and coded excitation scanning acoustic microscopy as well as small-angle X-ray scattering, respectively. The optical microscopy results show that USW produces local density differences of the structuring crystalline material and induces the orientation of the MG platelets. X-ray diffraction measurements confirm these findings and show a 23% average increase in MG platelet correlation length, which can be linked to platelet thickness, as well as an increase in the MG nanoplatelet surface smoothness. These findings produce a foundation for better understanding the effect of acoustophoresis in dynamically developing lipid-based materials and illuminate the mechanical changes that arise because of USW treatment.
Ultrasound standing waves (USW) generate forces displacing micrometer-sized particles in fluid─a phenomenon called acoustophoresis. Its impact on evolving crystal networks is unexplored. Using monoglyceride oleogels, we analyze USW effects on crystal growth via optical/acoustic microscopy and SAXS. Results reveal USW-induced density variations, platelet alignment, 23% increase in correlation length, and enhanced surface roughness, elucidating mechanical changes in lipid-based materials.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.