吡唑-四唑-嘧啶的分子组装:π共轭延伸和定向氢键协同工程的耐热能材料

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ruyi Lu, Ningning Du, Shuaijie Jiang, Ming Lu and Pengcheng Wang*, 
{"title":"吡唑-四唑-嘧啶的分子组装:π共轭延伸和定向氢键协同工程的耐热能材料","authors":"Ruyi Lu,&nbsp;Ningning Du,&nbsp;Shuaijie Jiang,&nbsp;Ming Lu and Pengcheng Wang*,&nbsp;","doi":"10.1021/acs.cgd.5c0018910.1021/acs.cgd.5c00189","DOIUrl":null,"url":null,"abstract":"<p >The development of thermally stable explosives with simple synthesis and high performance remains a key challenge in energetic materials research. This study synthesized two nitrogen-rich heterocyclic compounds through structural conjugation strategies: tetrazole derivative <b>1</b> and nitro-pyrazole derivative <b>4</b>. Both materials exhibited exceptional thermal stability (<i>T</i><sub>d</sub> = 305 and 356 °C, respectively), comparable to benchmark materials TATB (<i>T</i><sub>d</sub> = 350.0 °C) and HNS (<i>T</i><sub>d</sub> = 318.0 °C). Their energetic performance showed balanced characteristics with detonation velocities (<i>D</i><sub>v</sub>) of 8553 m·s<sup>–1</sup> (<b>1</b>) and 8607 m·s<sup>–1</sup> (<b>4</b>), combined with low sensitivity (IS ≥ 35 J, FS = 360 N). Six high-energy derivatives (<b>2</b>, <b>3</b>, <b>3–1</b> to <b>3–3</b>, <b>5</b>) were further developed based on these frameworks. The conjugation effects and hydrogen-bonding interactions revealed in this work establish a new design paradigm for achieving simultaneous optimization of thermal stability and detonation performance in advanced energetic materials.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 12","pages":"4304–4315 4304–4315"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Assemblies of Pyrazole-Tetrazole-Pyrimidine: Heat-Resistant Energetic Materials Engineered by π-Conjugation Extension and Directional Hydrogen-Bonding Synergy\",\"authors\":\"Ruyi Lu,&nbsp;Ningning Du,&nbsp;Shuaijie Jiang,&nbsp;Ming Lu and Pengcheng Wang*,&nbsp;\",\"doi\":\"10.1021/acs.cgd.5c0018910.1021/acs.cgd.5c00189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of thermally stable explosives with simple synthesis and high performance remains a key challenge in energetic materials research. This study synthesized two nitrogen-rich heterocyclic compounds through structural conjugation strategies: tetrazole derivative <b>1</b> and nitro-pyrazole derivative <b>4</b>. Both materials exhibited exceptional thermal stability (<i>T</i><sub>d</sub> = 305 and 356 °C, respectively), comparable to benchmark materials TATB (<i>T</i><sub>d</sub> = 350.0 °C) and HNS (<i>T</i><sub>d</sub> = 318.0 °C). Their energetic performance showed balanced characteristics with detonation velocities (<i>D</i><sub>v</sub>) of 8553 m·s<sup>–1</sup> (<b>1</b>) and 8607 m·s<sup>–1</sup> (<b>4</b>), combined with low sensitivity (IS ≥ 35 J, FS = 360 N). Six high-energy derivatives (<b>2</b>, <b>3</b>, <b>3–1</b> to <b>3–3</b>, <b>5</b>) were further developed based on these frameworks. The conjugation effects and hydrogen-bonding interactions revealed in this work establish a new design paradigm for achieving simultaneous optimization of thermal stability and detonation performance in advanced energetic materials.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"25 12\",\"pages\":\"4304–4315 4304–4315\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00189\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00189","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研制合成简单、性能优异的热稳定炸药是含能材料研究的一个重要课题。本研究通过结构偶联策略合成了两个富氮杂环化合物:四唑衍生物1和硝基吡唑衍生物4。两种材料都表现出优异的热稳定性(Td = 305和356°C),与基准材料TATB (Td = 350.0°C)和HNS (Td = 318.0°C)相当。它们的能量性能表现出平衡特征,爆速(Dv)为8553 m·s-1(1)和8607 m·s-1(4),灵敏度低(IS≥35 J, FS = 360 N)。在此基础上进一步开发了6种高能衍生物(2,3,3 - 1至3,3,5)。本研究揭示的共轭效应和氢键相互作用为同时优化先进含能材料的热稳定性和爆轰性能建立了一种新的设计范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Assemblies of Pyrazole-Tetrazole-Pyrimidine: Heat-Resistant Energetic Materials Engineered by π-Conjugation Extension and Directional Hydrogen-Bonding Synergy

The development of thermally stable explosives with simple synthesis and high performance remains a key challenge in energetic materials research. This study synthesized two nitrogen-rich heterocyclic compounds through structural conjugation strategies: tetrazole derivative 1 and nitro-pyrazole derivative 4. Both materials exhibited exceptional thermal stability (Td = 305 and 356 °C, respectively), comparable to benchmark materials TATB (Td = 350.0 °C) and HNS (Td = 318.0 °C). Their energetic performance showed balanced characteristics with detonation velocities (Dv) of 8553 m·s–1 (1) and 8607 m·s–1 (4), combined with low sensitivity (IS ≥ 35 J, FS = 360 N). Six high-energy derivatives (2, 3, 3–1 to 3–3, 5) were further developed based on these frameworks. The conjugation effects and hydrogen-bonding interactions revealed in this work establish a new design paradigm for achieving simultaneous optimization of thermal stability and detonation performance in advanced energetic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信