构建空气稳定亲锂石榴石型固体电解质的界面工程

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sidong Zhang, Meiqi Jia, Sijie Guo, Nicholas S. Grundish, An-Min Cao* and Yutao Li*, 
{"title":"构建空气稳定亲锂石榴石型固体电解质的界面工程","authors":"Sidong Zhang,&nbsp;Meiqi Jia,&nbsp;Sijie Guo,&nbsp;Nicholas S. Grundish,&nbsp;An-Min Cao* and Yutao Li*,&nbsp;","doi":"10.1021/acs.nanolett.5c0185010.1021/acs.nanolett.5c01850","DOIUrl":null,"url":null,"abstract":"<p >Garnet-type solid electrolytes (SEs) exhibit high ionic conductivity, a wide electrochemical window, and lithium stability, making them ideal for solid-state Li metal batteries. However, their air sensitivity leads to Li<sub>2</sub>CO<sub>3</sub> formation, causing poor Li wettability, high interfacial resistance, and dendrite growth. To address this, Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> is coated via a wet chemistry method, converting Li<sub>2</sub>CO<sub>3</sub> into a Li<sub>3</sub>PO<sub>4</sub>/MgO composite upon heating. This composite prevents reactions with moisture and CO<sub>2</sub>, ensuring air stability while enhancing Li wettability and reducing interfacial resistance. The Li<sup>+</sup>-conducting Li<sub>3</sub>PO<sub>4</sub> and insulating MgO in the composite interface enable rapid Li<sup>+</sup> diffusion while effectively suppressing electron penetration, resulting in a high critical current density of 1.1 mA·cm<sup>–2</sup>, with stable cycling for over 1200 h at 0.4 mA·cm<sup>–2</sup>. Furthermore, the modified SEs demonstrate excellent cycling stability in Li metal batteries with LiFePO<sub>4</sub> and LiCoO<sub>2</sub> cathodes, confirming the practical feasibility of this solid electrolyte interface modification strategy.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 24","pages":"9719–9725 9719–9725"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface Engineering for Constructing Air-Stable and Lithiophilic Garnet-Type Solid Electrolytes\",\"authors\":\"Sidong Zhang,&nbsp;Meiqi Jia,&nbsp;Sijie Guo,&nbsp;Nicholas S. Grundish,&nbsp;An-Min Cao* and Yutao Li*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c0185010.1021/acs.nanolett.5c01850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Garnet-type solid electrolytes (SEs) exhibit high ionic conductivity, a wide electrochemical window, and lithium stability, making them ideal for solid-state Li metal batteries. However, their air sensitivity leads to Li<sub>2</sub>CO<sub>3</sub> formation, causing poor Li wettability, high interfacial resistance, and dendrite growth. To address this, Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> is coated via a wet chemistry method, converting Li<sub>2</sub>CO<sub>3</sub> into a Li<sub>3</sub>PO<sub>4</sub>/MgO composite upon heating. This composite prevents reactions with moisture and CO<sub>2</sub>, ensuring air stability while enhancing Li wettability and reducing interfacial resistance. The Li<sup>+</sup>-conducting Li<sub>3</sub>PO<sub>4</sub> and insulating MgO in the composite interface enable rapid Li<sup>+</sup> diffusion while effectively suppressing electron penetration, resulting in a high critical current density of 1.1 mA·cm<sup>–2</sup>, with stable cycling for over 1200 h at 0.4 mA·cm<sup>–2</sup>. Furthermore, the modified SEs demonstrate excellent cycling stability in Li metal batteries with LiFePO<sub>4</sub> and LiCoO<sub>2</sub> cathodes, confirming the practical feasibility of this solid electrolyte interface modification strategy.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 24\",\"pages\":\"9719–9725 9719–9725\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01850\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01850","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

石榴石型固体电解质(SEs)具有高离子电导率,宽电化学窗口和锂稳定性,使其成为固态锂金属电池的理想选择。然而,它们的空气敏感性导致Li2CO3的形成,导致Li润湿性差,界面阻力高,枝晶生长。为了解决这个问题,通过湿化学方法涂覆Mg3(PO4)2,加热后将Li2CO3转化为Li3PO4/MgO复合材料。这种复合材料防止与水分和二氧化碳的反应,确保空气稳定性,同时增强Li润湿性并减少界面阻力。复合界面中导电Li+的Li3PO4和绝缘MgO使Li+快速扩散,同时有效抑制电子渗透,导致临界电流密度高达1.1 mA·cm-2,在0.4 mA·cm-2下稳定循环超过1200 h。此外,改性后的SEs在LiFePO4和LiCoO2阴极的锂金属电池中表现出良好的循环稳定性,证实了该固体电解质界面改性策略的实际可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interface Engineering for Constructing Air-Stable and Lithiophilic Garnet-Type Solid Electrolytes

Interface Engineering for Constructing Air-Stable and Lithiophilic Garnet-Type Solid Electrolytes

Garnet-type solid electrolytes (SEs) exhibit high ionic conductivity, a wide electrochemical window, and lithium stability, making them ideal for solid-state Li metal batteries. However, their air sensitivity leads to Li2CO3 formation, causing poor Li wettability, high interfacial resistance, and dendrite growth. To address this, Mg3(PO4)2 is coated via a wet chemistry method, converting Li2CO3 into a Li3PO4/MgO composite upon heating. This composite prevents reactions with moisture and CO2, ensuring air stability while enhancing Li wettability and reducing interfacial resistance. The Li+-conducting Li3PO4 and insulating MgO in the composite interface enable rapid Li+ diffusion while effectively suppressing electron penetration, resulting in a high critical current density of 1.1 mA·cm–2, with stable cycling for over 1200 h at 0.4 mA·cm–2. Furthermore, the modified SEs demonstrate excellent cycling stability in Li metal batteries with LiFePO4 and LiCoO2 cathodes, confirming the practical feasibility of this solid electrolyte interface modification strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信