气溶胶沉积氮化镓:一种自改进的电解析氢催化剂

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Gutema Teshome Gudena, Dahoon Kim, Daba Deme Megersa, Jae-Young Choi*, Jae-Hyuk Park* and Hak Ki Yu*, 
{"title":"气溶胶沉积氮化镓:一种自改进的电解析氢催化剂","authors":"Gutema Teshome Gudena,&nbsp;Dahoon Kim,&nbsp;Daba Deme Megersa,&nbsp;Jae-Young Choi*,&nbsp;Jae-Hyuk Park* and Hak Ki Yu*,&nbsp;","doi":"10.1021/acs.cgd.5c0045810.1021/acs.cgd.5c00458","DOIUrl":null,"url":null,"abstract":"<p >In this study, gallium nitride (GaN), a stable and conductive III–V semiconductor, was explored as an alternate electrocatalyst for the hydrogen evolution reaction (HER). Using the aerosol deposition (AD) method, GaN nanoparticles were uniformly deposited onto carbon paper, providing an efficient and scalable approach to electrode fabrication. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation of a thin gallium oxynitride layer resulting from partial oxygen substitution at nitrogen sites. This oxynitride layer alters the material’s electronic structure, enhancing conductivity, creating synergistic active sites, and reducing reaction barriers, which promote efficient electron transfer during water splitting. Our findings demonstrate the potential of GaN as a cost-effective, high-performance electrocatalyst for hydrogen production, with excellent stability and catalytic activity under acidic conditions.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 12","pages":"4531–4538 4531–4538"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerosol Deposited GaN: A Self-Improving Catalyst for Electrolytic Hydrogen Evolution Reaction\",\"authors\":\"Gutema Teshome Gudena,&nbsp;Dahoon Kim,&nbsp;Daba Deme Megersa,&nbsp;Jae-Young Choi*,&nbsp;Jae-Hyuk Park* and Hak Ki Yu*,&nbsp;\",\"doi\":\"10.1021/acs.cgd.5c0045810.1021/acs.cgd.5c00458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, gallium nitride (GaN), a stable and conductive III–V semiconductor, was explored as an alternate electrocatalyst for the hydrogen evolution reaction (HER). Using the aerosol deposition (AD) method, GaN nanoparticles were uniformly deposited onto carbon paper, providing an efficient and scalable approach to electrode fabrication. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation of a thin gallium oxynitride layer resulting from partial oxygen substitution at nitrogen sites. This oxynitride layer alters the material’s electronic structure, enhancing conductivity, creating synergistic active sites, and reducing reaction barriers, which promote efficient electron transfer during water splitting. Our findings demonstrate the potential of GaN as a cost-effective, high-performance electrocatalyst for hydrogen production, with excellent stability and catalytic activity under acidic conditions.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"25 12\",\"pages\":\"4531–4538 4531–4538\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00458\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00458","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,氮化镓(GaN)是一种稳定的导电III-V半导体,被探索作为析氢反应(HER)的替代电催化剂。采用气溶胶沉积(AD)方法,氮化镓纳米颗粒均匀沉积在碳纸上,为电极制造提供了一种高效且可扩展的方法。x射线光电子能谱(XPS)分析表明,由于氮位点的部分氧取代,形成了一层薄薄的氮化镓氧层。这种氮化氧层改变了材料的电子结构,增强了电导率,产生了协同活性位点,减少了反应障碍,从而促进了水分解过程中有效的电子转移。我们的研究结果证明了氮化镓作为一种具有成本效益,高性能的制氢电催化剂的潜力,在酸性条件下具有优异的稳定性和催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aerosol Deposited GaN: A Self-Improving Catalyst for Electrolytic Hydrogen Evolution Reaction

In this study, gallium nitride (GaN), a stable and conductive III–V semiconductor, was explored as an alternate electrocatalyst for the hydrogen evolution reaction (HER). Using the aerosol deposition (AD) method, GaN nanoparticles were uniformly deposited onto carbon paper, providing an efficient and scalable approach to electrode fabrication. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation of a thin gallium oxynitride layer resulting from partial oxygen substitution at nitrogen sites. This oxynitride layer alters the material’s electronic structure, enhancing conductivity, creating synergistic active sites, and reducing reaction barriers, which promote efficient electron transfer during water splitting. Our findings demonstrate the potential of GaN as a cost-effective, high-performance electrocatalyst for hydrogen production, with excellent stability and catalytic activity under acidic conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信