人工扭结缺陷能够通过机械化学活化高效降解纳米纤维素

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-06-17 DOI:10.1016/j.matt.2025.102212
YuanZhen Hou, Zi-Meng Han, YinBo Zhu, Jun Xia, JiaHao Li, Kun-Peng Yang, ZeZhou He, RongZhuang Song, Qing-Fang Guan, Yang Lu, Shu-Hong Yu, HengAn Wu
{"title":"人工扭结缺陷能够通过机械化学活化高效降解纳米纤维素","authors":"YuanZhen Hou, Zi-Meng Han, YinBo Zhu, Jun Xia, JiaHao Li, Kun-Peng Yang, ZeZhou He, RongZhuang Song, Qing-Fang Guan, Yang Lu, Shu-Hong Yu, HengAn Wu","doi":"10.1016/j.matt.2025.102212","DOIUrl":null,"url":null,"abstract":"High-efficiency degradation and conversion of cellulosic biomass into biofuels and bio-based chemicals are critical to human society for sustainable development. Long-term challenges in deciphering how mechanical external force activates nanocellulose hydrolysis at the molecular level have hindered the wider application of mechanochemistry in high-efficiency degradation technologies. Here, combining multiscale modeling and <em>in situ</em> experimental characterization, we revealed the mechanochemistry hidden in the mechanically activated nanocellulose degradation behaviors, that artificial kink defects enable hydrolysis acceleration. The localized plastic deformation and nonlinear molecular geometry at kink defects drive hydrolysis processes toward the lower-barrier reaction pathway and facilitate hydrolysis accessibility. The proposed two-step mechanochemical hydrolysis strategy, introducing more artificial kink defects and preferential reaction sites via mechanical pretreatment, realizes substantial enhancement of hydrolysis efficiency. This study provides a framework for anticipating how mechanical external force, microstructure defects, and molecular geometric mutation contribute to the mechanochemical degradation of cellulosic biomass with more sustainability and bioeconomy.","PeriodicalId":388,"journal":{"name":"Matter","volume":"21 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial kink defects enable high-efficiency degradation of nanocellulose via mechanochemical activation\",\"authors\":\"YuanZhen Hou, Zi-Meng Han, YinBo Zhu, Jun Xia, JiaHao Li, Kun-Peng Yang, ZeZhou He, RongZhuang Song, Qing-Fang Guan, Yang Lu, Shu-Hong Yu, HengAn Wu\",\"doi\":\"10.1016/j.matt.2025.102212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-efficiency degradation and conversion of cellulosic biomass into biofuels and bio-based chemicals are critical to human society for sustainable development. Long-term challenges in deciphering how mechanical external force activates nanocellulose hydrolysis at the molecular level have hindered the wider application of mechanochemistry in high-efficiency degradation technologies. Here, combining multiscale modeling and <em>in situ</em> experimental characterization, we revealed the mechanochemistry hidden in the mechanically activated nanocellulose degradation behaviors, that artificial kink defects enable hydrolysis acceleration. The localized plastic deformation and nonlinear molecular geometry at kink defects drive hydrolysis processes toward the lower-barrier reaction pathway and facilitate hydrolysis accessibility. The proposed two-step mechanochemical hydrolysis strategy, introducing more artificial kink defects and preferential reaction sites via mechanical pretreatment, realizes substantial enhancement of hydrolysis efficiency. This study provides a framework for anticipating how mechanical external force, microstructure defects, and molecular geometric mutation contribute to the mechanochemical degradation of cellulosic biomass with more sustainability and bioeconomy.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2025.102212\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102212","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纤维素生物质的高效降解和转化为生物燃料和生物基化学品对人类社会的可持续发展至关重要。在分子水平上破译机械外力如何激活纳米纤维素水解的长期挑战阻碍了机械化学在高效降解技术中的广泛应用。本文结合多尺度建模和原位实验表征,揭示了机械活化纳米纤维素降解行为中隐藏的机械化学,即人工扭结缺陷能够加速水解。扭结缺陷处的局部塑性变形和非线性分子几何结构驱动水解过程向低势垒反应途径发展,有利于水解的可及性。提出的两步机械化学水解策略,通过机械预处理引入更多的人工扭结缺陷和优先反应位点,实现了水解效率的大幅提高。该研究为预测机械外力、微观结构缺陷和分子几何突变如何促进纤维素生物质的机械化学降解提供了一个框架,使其更具可持续性和生物经济性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial kink defects enable high-efficiency degradation of nanocellulose via mechanochemical activation

Artificial kink defects enable high-efficiency degradation of nanocellulose via mechanochemical activation
High-efficiency degradation and conversion of cellulosic biomass into biofuels and bio-based chemicals are critical to human society for sustainable development. Long-term challenges in deciphering how mechanical external force activates nanocellulose hydrolysis at the molecular level have hindered the wider application of mechanochemistry in high-efficiency degradation technologies. Here, combining multiscale modeling and in situ experimental characterization, we revealed the mechanochemistry hidden in the mechanically activated nanocellulose degradation behaviors, that artificial kink defects enable hydrolysis acceleration. The localized plastic deformation and nonlinear molecular geometry at kink defects drive hydrolysis processes toward the lower-barrier reaction pathway and facilitate hydrolysis accessibility. The proposed two-step mechanochemical hydrolysis strategy, introducing more artificial kink defects and preferential reaction sites via mechanical pretreatment, realizes substantial enhancement of hydrolysis efficiency. This study provides a framework for anticipating how mechanical external force, microstructure defects, and molecular geometric mutation contribute to the mechanochemical degradation of cellulosic biomass with more sustainability and bioeconomy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信