钛磁铁矿(Fe3-xTixO4)纳米颗粒中活性结构铁(II)的氧化和补给

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-06-16 DOI:10.1039/D5NR00989H
D. V. Boglaienko, J. Liu, M. P. Prange, O. Qafoku, M. Sassi, E. Arenholz, C. I. Pearce and K. M. Rosso
{"title":"钛磁铁矿(Fe3-xTixO4)纳米颗粒中活性结构铁(II)的氧化和补给","authors":"D. V. Boglaienko, J. Liu, M. P. Prange, O. Qafoku, M. Sassi, E. Arenholz, C. I. Pearce and K. M. Rosso","doi":"10.1039/D5NR00989H","DOIUrl":null,"url":null,"abstract":"<p >Mixed-valent iron oxide minerals, such as magnetite (Fe(<small>II</small>)(Fe(<small>III</small>))<small><sub>2</sub></small>O<small><sub>4</sub></small>), are an important source of solid-state ferrous iron (Fe(<small>II</small>)) that can impact the speciation and transport of electron accepting contaminants in the Earth’s subsurface, such as radioactive pertechnetate (<small><sup>99</sup></small>Tc(<small>VII</small>)O<small><sub>4</sub></small><small><sup>−</sup></small>). However, when oxidizing conditions are encountered, structural Fe(<small>II</small>) at the mineral surface is consumed yielding a maghemite (γ-Fe(<small>III</small>)<small><sub>2</sub></small>O<small><sub>3</sub></small>)-like layer that limits further electron transfer. This oxidized surface layer can be recharged back to the original Fe(<small>II</small>)/(<small>III</small>) ratio by re-exposure to reducing conditions, <em>i.e.</em>, aqueous solutions containing Fe<small><sup>2+</sup></small>. However, for substituted magnetite (Fe<small><sub>3−<em>x</em></sub></small>M<small><sub><em>x</em></sub></small>O<small><sub>4</sub></small>, M = transition metal cation), the extent of this redox recyclability is unclear. Here, we examine oxidation and recharge for titanomagnetite (Fe<small><sub>3−<em>x</em></sub></small>Ti<small><sub><em>x</em></sub></small>O<small><sub>4</sub></small>) nanoparticles, where the Fe(<small>II</small>)/Fe(<small>III</small>) ratio varies by the amount of Fe(<small>II</small>) required to charge balance the titanium (Ti(<small>IV</small>)) substituted into the structure. The nanoparticles were synthesized by aqueous precipitation from a solution containing ferrous, ferric and titanium chloride at room temperature. Transmission electron microscopy combined with electron energy loss spectroscopy revealed that rapid precipitation formed core–shell-like nanoparticles consisting of a hyperstoichiometric magnetite core, with Ti(<small>IV</small>) and charge balancing Fe(<small>II</small>) enriched at the surface. This surface enrichment made Fe(<small>II</small>) more available for electron transfer reactions with redox active solution species. Examination of oxidation by H<small><sub>2</sub></small>O<small><sub>2</sub></small> followed by recharge with aqueous Fe<small><sup>2+</sup></small> indicates recyclability of reducing equivalents in the nanoparticles, yielding a core recrystallized to stoichiometric magnetite and a shell bearing excess Fe(<small>II</small>) to charge balance the substituted Ti(<small>IV</small>). The recharged particles are shown to have restored redox reactivity with <small><sup>99</sup></small>Tc(<small>VII</small>)O<small><sub>4</sub></small><small><sup>−</sup></small> resulting in reduction to <small><sup>99</sup></small>Tc(<small>IV</small>)O<small><sub>2</sub></small> and oxidation of the structural Fe(<small>II</small>) to Fe(<small>III</small>).</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 28","pages":" 16682-16696"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d5nr00989h?page=search","citationCount":"0","resultStr":"{\"title\":\"Oxidation and recharge of reactive structural Fe(ii) in titanomagnetite (Fe3−xTixO4) nanoparticles†\",\"authors\":\"D. V. Boglaienko, J. Liu, M. P. Prange, O. Qafoku, M. Sassi, E. Arenholz, C. I. Pearce and K. M. Rosso\",\"doi\":\"10.1039/D5NR00989H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Mixed-valent iron oxide minerals, such as magnetite (Fe(<small>II</small>)(Fe(<small>III</small>))<small><sub>2</sub></small>O<small><sub>4</sub></small>), are an important source of solid-state ferrous iron (Fe(<small>II</small>)) that can impact the speciation and transport of electron accepting contaminants in the Earth’s subsurface, such as radioactive pertechnetate (<small><sup>99</sup></small>Tc(<small>VII</small>)O<small><sub>4</sub></small><small><sup>−</sup></small>). However, when oxidizing conditions are encountered, structural Fe(<small>II</small>) at the mineral surface is consumed yielding a maghemite (γ-Fe(<small>III</small>)<small><sub>2</sub></small>O<small><sub>3</sub></small>)-like layer that limits further electron transfer. This oxidized surface layer can be recharged back to the original Fe(<small>II</small>)/(<small>III</small>) ratio by re-exposure to reducing conditions, <em>i.e.</em>, aqueous solutions containing Fe<small><sup>2+</sup></small>. However, for substituted magnetite (Fe<small><sub>3−<em>x</em></sub></small>M<small><sub><em>x</em></sub></small>O<small><sub>4</sub></small>, M = transition metal cation), the extent of this redox recyclability is unclear. Here, we examine oxidation and recharge for titanomagnetite (Fe<small><sub>3−<em>x</em></sub></small>Ti<small><sub><em>x</em></sub></small>O<small><sub>4</sub></small>) nanoparticles, where the Fe(<small>II</small>)/Fe(<small>III</small>) ratio varies by the amount of Fe(<small>II</small>) required to charge balance the titanium (Ti(<small>IV</small>)) substituted into the structure. The nanoparticles were synthesized by aqueous precipitation from a solution containing ferrous, ferric and titanium chloride at room temperature. Transmission electron microscopy combined with electron energy loss spectroscopy revealed that rapid precipitation formed core–shell-like nanoparticles consisting of a hyperstoichiometric magnetite core, with Ti(<small>IV</small>) and charge balancing Fe(<small>II</small>) enriched at the surface. This surface enrichment made Fe(<small>II</small>) more available for electron transfer reactions with redox active solution species. Examination of oxidation by H<small><sub>2</sub></small>O<small><sub>2</sub></small> followed by recharge with aqueous Fe<small><sup>2+</sup></small> indicates recyclability of reducing equivalents in the nanoparticles, yielding a core recrystallized to stoichiometric magnetite and a shell bearing excess Fe(<small>II</small>) to charge balance the substituted Ti(<small>IV</small>). The recharged particles are shown to have restored redox reactivity with <small><sup>99</sup></small>Tc(<small>VII</small>)O<small><sub>4</sub></small><small><sup>−</sup></small> resulting in reduction to <small><sup>99</sup></small>Tc(<small>IV</small>)O<small><sub>2</sub></small> and oxidation of the structural Fe(<small>II</small>) to Fe(<small>III</small>).</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 28\",\"pages\":\" 16682-16696\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d5nr00989h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr00989h\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr00989h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

混合价氧化铁矿物,如磁铁矿(Fe(II)(Fe(III))2O4),是固态亚铁(Fe(II))的重要来源,可以影响地下接受电子污染物的形态和传递,如放射性高锝酸盐(99Tc(VII)O4-)。然而,当在地下遇到氧化条件时,矿物表面的结构铁(II)被消耗,产生类似磁赤铁矿(γ-Fe(III)2O3)的层,限制了进一步的电子转移。通过再次暴露于还原条件下,即含有Fe2+的水溶液中,氧化的表面层可以重新充电到原来的Fe(II)/(III)比。然而,对于取代磁铁矿(Fe3-xMxO4, M =过渡金属阳离子),这种氧化还原可回收性的程度尚不清楚。在这里,我们研究了钛磁铁矿(Fe3-xTixO4)纳米颗粒的氧化和充电,其中Fe(II)/Fe(III)的比例随Fe(II)的数量而变化,Fe(II)的数量可以平衡取代到结构中的钛(Ti(IV))。在含铁、铁和氯化钛的溶液中,采用水相沉淀法在室温下合成纳米颗粒。透射电镜结合电子能量损失谱显示,快速沉淀形成了由高化学计量磁铁矿核组成的核壳状纳米颗粒,表面富集了Ti(IV)和电荷平衡的Fe(II)。这种表面富集使Fe(II)更容易与氧化还原活性溶液进行电子转移反应。对H2O2氧化后再用水中Fe2+充注的测试表明,纳米颗粒中的还原性当量可循环利用,产生一个重结晶为化学计量磁铁矿的核和一个承载多余Fe(II)的壳,以平衡取代的Ti(IV)的电荷。结果表明,充电后的颗粒与99Tc(VII)O4具有恢复的氧化还原活性,从而还原为99Tc(IV)O2,并将结构铁(II)氧化为铁(III)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oxidation and recharge of reactive structural Fe(ii) in titanomagnetite (Fe3−xTixO4) nanoparticles†

Oxidation and recharge of reactive structural Fe(ii) in titanomagnetite (Fe3−xTixO4) nanoparticles†

Mixed-valent iron oxide minerals, such as magnetite (Fe(II)(Fe(III))2O4), are an important source of solid-state ferrous iron (Fe(II)) that can impact the speciation and transport of electron accepting contaminants in the Earth’s subsurface, such as radioactive pertechnetate (99Tc(VII)O4). However, when oxidizing conditions are encountered, structural Fe(II) at the mineral surface is consumed yielding a maghemite (γ-Fe(III)2O3)-like layer that limits further electron transfer. This oxidized surface layer can be recharged back to the original Fe(II)/(III) ratio by re-exposure to reducing conditions, i.e., aqueous solutions containing Fe2+. However, for substituted magnetite (Fe3−xMxO4, M = transition metal cation), the extent of this redox recyclability is unclear. Here, we examine oxidation and recharge for titanomagnetite (Fe3−xTixO4) nanoparticles, where the Fe(II)/Fe(III) ratio varies by the amount of Fe(II) required to charge balance the titanium (Ti(IV)) substituted into the structure. The nanoparticles were synthesized by aqueous precipitation from a solution containing ferrous, ferric and titanium chloride at room temperature. Transmission electron microscopy combined with electron energy loss spectroscopy revealed that rapid precipitation formed core–shell-like nanoparticles consisting of a hyperstoichiometric magnetite core, with Ti(IV) and charge balancing Fe(II) enriched at the surface. This surface enrichment made Fe(II) more available for electron transfer reactions with redox active solution species. Examination of oxidation by H2O2 followed by recharge with aqueous Fe2+ indicates recyclability of reducing equivalents in the nanoparticles, yielding a core recrystallized to stoichiometric magnetite and a shell bearing excess Fe(II) to charge balance the substituted Ti(IV). The recharged particles are shown to have restored redox reactivity with 99Tc(VII)O4 resulting in reduction to 99Tc(IV)O2 and oxidation of the structural Fe(II) to Fe(III).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信