高温CO2电解用高氧缺陷活性掺钾钙钛矿阴极

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Juntao Feng, Yijian Wang, Haowei Li, Zhongyi Zhao, Hesheng Zheng and Xifeng Ding*, 
{"title":"高温CO2电解用高氧缺陷活性掺钾钙钛矿阴极","authors":"Juntao Feng,&nbsp;Yijian Wang,&nbsp;Haowei Li,&nbsp;Zhongyi Zhao,&nbsp;Hesheng Zheng and Xifeng Ding*,&nbsp;","doi":"10.1021/acssuschemeng.5c02153","DOIUrl":null,"url":null,"abstract":"<p >Solid oxide electrolysis cells (SOECs) can efficiently electrolyze CO<sub>2</sub> into CO to alleviate environmental pollution caused by greenhouse gas emissions. However, their practical applications are limited by insufficient CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) performance of the cathode materials. In this study, we explored a series of potassium-doped Ba<sub>1–<i>x</i></sub>K<i><sub><i>x</i></sub></i>Co<sub>0.5</sub>Fe<sub>0.4</sub>Nb<sub>0.1</sub>O<sub>3−δ</sub> (B<sub>1–<i>x</i></sub>K<i><sub><i>x</i></sub></i>CFNb) perovskite cathodes with superior CO<sub>2</sub> adsorption performance for direct CO<sub>2</sub> electrolysis in SOECs. An introduction of 10% potassium in BaCo<sub>0.5</sub>Fe<sub>0.4</sub>Nb<sub>0.1</sub>O<sub>3−δ</sub> resulted in a substantial increase in oxygen vacancies from 0.316 to 0.423 at 800 °C. The electrical conductivity relaxation test further verified that the oxygen defects improve the surface-exchange coefficient of oxygen for Ba<sub>0.9</sub>K<sub>0.1</sub>Co<sub>0.5</sub>Fe<sub>0.4</sub>Nb<sub>0.1</sub>O<sub>3−δ</sub> (B90K10CFNb). The increased surface-exchange kinetics with more oxygen defects and CO<sub>2</sub> adsorption capacity with high-alkalinity potassium considerably accelerated the CO<sub>2</sub>RR processes on the cathode of SOECs. The current density of the electrolysis cell with the B90K10CFNb cathode reaches 0.588 A cm<sup>–2</sup> under 1.5 V at 800 °C, which is 3% higher than that of its BCFNb counterpart. Moreover, the B90K10CFNb electrolysis cell remained stable for 100 h under 1.5 V at 800 °C. This study underscores the potential of regulating oxygen defects in perovskite cathode materials through alkali metal cations for high-temperature CO<sub>2</sub> electrolysis.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 25","pages":"9565–9575"},"PeriodicalIF":7.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Potassium-Doped Perovskite Cathodes with High Oxygen Defects for High-Temperature CO2 Electrolysis\",\"authors\":\"Juntao Feng,&nbsp;Yijian Wang,&nbsp;Haowei Li,&nbsp;Zhongyi Zhao,&nbsp;Hesheng Zheng and Xifeng Ding*,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.5c02153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Solid oxide electrolysis cells (SOECs) can efficiently electrolyze CO<sub>2</sub> into CO to alleviate environmental pollution caused by greenhouse gas emissions. However, their practical applications are limited by insufficient CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) performance of the cathode materials. In this study, we explored a series of potassium-doped Ba<sub>1–<i>x</i></sub>K<i><sub><i>x</i></sub></i>Co<sub>0.5</sub>Fe<sub>0.4</sub>Nb<sub>0.1</sub>O<sub>3−δ</sub> (B<sub>1–<i>x</i></sub>K<i><sub><i>x</i></sub></i>CFNb) perovskite cathodes with superior CO<sub>2</sub> adsorption performance for direct CO<sub>2</sub> electrolysis in SOECs. An introduction of 10% potassium in BaCo<sub>0.5</sub>Fe<sub>0.4</sub>Nb<sub>0.1</sub>O<sub>3−δ</sub> resulted in a substantial increase in oxygen vacancies from 0.316 to 0.423 at 800 °C. The electrical conductivity relaxation test further verified that the oxygen defects improve the surface-exchange coefficient of oxygen for Ba<sub>0.9</sub>K<sub>0.1</sub>Co<sub>0.5</sub>Fe<sub>0.4</sub>Nb<sub>0.1</sub>O<sub>3−δ</sub> (B90K10CFNb). The increased surface-exchange kinetics with more oxygen defects and CO<sub>2</sub> adsorption capacity with high-alkalinity potassium considerably accelerated the CO<sub>2</sub>RR processes on the cathode of SOECs. The current density of the electrolysis cell with the B90K10CFNb cathode reaches 0.588 A cm<sup>–2</sup> under 1.5 V at 800 °C, which is 3% higher than that of its BCFNb counterpart. Moreover, the B90K10CFNb electrolysis cell remained stable for 100 h under 1.5 V at 800 °C. This study underscores the potential of regulating oxygen defects in perovskite cathode materials through alkali metal cations for high-temperature CO<sub>2</sub> electrolysis.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 25\",\"pages\":\"9565–9575\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c02153\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c02153","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固体氧化物电解电池(SOECs)可以有效地将CO2电解成CO,减轻温室气体排放对环境的污染。然而,阴极材料的CO2还原反应(CO2RR)性能不足,限制了它们的实际应用。在本研究中,我们探索了一系列具有优异CO2吸附性能的钙钛矿钡掺杂钡- xkxco0.5 fe0.4 nb0.1 o3−δ (B1-xKxCFNb)钙钛矿阴极,用于soec中直接CO2电解。在800℃时,在BaCo0.5Fe0.4Nb0.1O3−δ中加入10%的钾,使氧空位从0.316大幅增加到0.423。电导率松弛试验进一步验证了氧缺陷提高了Ba0.9K0.1Co0.5Fe0.4Nb0.1O3−δ (B90K10CFNb)的氧表面交换系数。氧缺陷增多的表面交换动力学和高碱度钾对CO2的吸附能力大大加快了soec阴极上的CO2RR过程。使用B90K10CFNb阴极的电解槽在800℃下,在1.5 V条件下电流密度达到0.588 A cm-2,比BCFNb高3%。此外,B90K10CFNb电解电池在800°C下,在1.5 V下保持100 h的稳定性。该研究强调了通过碱金属阳离子调节钙钛矿阴极材料中氧缺陷用于高温CO2电解的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Active Potassium-Doped Perovskite Cathodes with High Oxygen Defects for High-Temperature CO2 Electrolysis

Active Potassium-Doped Perovskite Cathodes with High Oxygen Defects for High-Temperature CO2 Electrolysis

Active Potassium-Doped Perovskite Cathodes with High Oxygen Defects for High-Temperature CO2 Electrolysis

Solid oxide electrolysis cells (SOECs) can efficiently electrolyze CO2 into CO to alleviate environmental pollution caused by greenhouse gas emissions. However, their practical applications are limited by insufficient CO2 reduction reaction (CO2RR) performance of the cathode materials. In this study, we explored a series of potassium-doped Ba1–xKxCo0.5Fe0.4Nb0.1O3−δ (B1–xKxCFNb) perovskite cathodes with superior CO2 adsorption performance for direct CO2 electrolysis in SOECs. An introduction of 10% potassium in BaCo0.5Fe0.4Nb0.1O3−δ resulted in a substantial increase in oxygen vacancies from 0.316 to 0.423 at 800 °C. The electrical conductivity relaxation test further verified that the oxygen defects improve the surface-exchange coefficient of oxygen for Ba0.9K0.1Co0.5Fe0.4Nb0.1O3−δ (B90K10CFNb). The increased surface-exchange kinetics with more oxygen defects and CO2 adsorption capacity with high-alkalinity potassium considerably accelerated the CO2RR processes on the cathode of SOECs. The current density of the electrolysis cell with the B90K10CFNb cathode reaches 0.588 A cm–2 under 1.5 V at 800 °C, which is 3% higher than that of its BCFNb counterpart. Moreover, the B90K10CFNb electrolysis cell remained stable for 100 h under 1.5 V at 800 °C. This study underscores the potential of regulating oxygen defects in perovskite cathode materials through alkali metal cations for high-temperature CO2 electrolysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信