离子电位驱动的界面pH控制使中性铝空气电池的阳极利用率高

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ming Li*, Haotian Chen, Sha Luo, Yuxi Zhang, An Duan, Shidong Li, Yu Feng, Bao Zhang and Wei Sun*, 
{"title":"离子电位驱动的界面pH控制使中性铝空气电池的阳极利用率高","authors":"Ming Li*,&nbsp;Haotian Chen,&nbsp;Sha Luo,&nbsp;Yuxi Zhang,&nbsp;An Duan,&nbsp;Shidong Li,&nbsp;Yu Feng,&nbsp;Bao Zhang and Wei Sun*,&nbsp;","doi":"10.1021/acsami.5c08218","DOIUrl":null,"url":null,"abstract":"<p >Aqueous aluminum-air batteries (AABs) hold great promise as a sustainable energy conversion technology. However, they encounter significant challenges, including self-corrosion of the anode in alkaline electrolytes and passivation in neutral NaCl-based systems. Herein, we propose an ionic potential (φ)-guided design of a NH<sub>4</sub>Cl/MnCl<sub>2</sub> neutral electrolyte that maintains interfacial pH between 4.1 and 4.4 via regulated hydrolysis equilibrium. Selected NH<sub>4</sub><sup>+</sup> and Mn<sup>2+</sup> (φ = 29.85) synergistically inhibit Al(OH)<sub>3</sub> passivation layers while suppressing hydrogen evolution, as evidenced by in situ pH monitoring and comprehensive characterization analysis. The optimized electrolyte exhibits a high output voltage of 0.97 V (20% improvement over pure NaCl systems) and an anode utilization efficiency exceeding 84.5%, corresponding to a specific capacity of 2516.5 mAh g<sup>–1</sup>. Electrochemical impedance spectroscopy (EIS) results indicate that the charge-transfer resistance is reduced by an order of magnitude when compared with conventional electrolytes. In Swagelok-type cells with a restricted electrolyte-to-Al anode ratio (E/Al = 267 mg mL<sup>–1</sup>), a high discharge capacity over 30 mAh cm<sup>–2</sup> is achieved (anode utilization &gt;24%). Moreover, molded batteries featuring structural engineering innovations can deliver 130 mAh at 1 mA cm<sup>–2</sup> (anode utilization &gt;94%). This research establishes a universal φ-based design principle for metal-air battery electrolytes, balancing corrosion inhibition and activation kinetics through thermodynamic regulation.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 26","pages":"38172–38180"},"PeriodicalIF":8.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionic Potential-Driven Interfacial pH Control Enables High Anode Utilization for Neutral Aluminum-Air Batteries\",\"authors\":\"Ming Li*,&nbsp;Haotian Chen,&nbsp;Sha Luo,&nbsp;Yuxi Zhang,&nbsp;An Duan,&nbsp;Shidong Li,&nbsp;Yu Feng,&nbsp;Bao Zhang and Wei Sun*,&nbsp;\",\"doi\":\"10.1021/acsami.5c08218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Aqueous aluminum-air batteries (AABs) hold great promise as a sustainable energy conversion technology. However, they encounter significant challenges, including self-corrosion of the anode in alkaline electrolytes and passivation in neutral NaCl-based systems. Herein, we propose an ionic potential (φ)-guided design of a NH<sub>4</sub>Cl/MnCl<sub>2</sub> neutral electrolyte that maintains interfacial pH between 4.1 and 4.4 via regulated hydrolysis equilibrium. Selected NH<sub>4</sub><sup>+</sup> and Mn<sup>2+</sup> (φ = 29.85) synergistically inhibit Al(OH)<sub>3</sub> passivation layers while suppressing hydrogen evolution, as evidenced by in situ pH monitoring and comprehensive characterization analysis. The optimized electrolyte exhibits a high output voltage of 0.97 V (20% improvement over pure NaCl systems) and an anode utilization efficiency exceeding 84.5%, corresponding to a specific capacity of 2516.5 mAh g<sup>–1</sup>. Electrochemical impedance spectroscopy (EIS) results indicate that the charge-transfer resistance is reduced by an order of magnitude when compared with conventional electrolytes. In Swagelok-type cells with a restricted electrolyte-to-Al anode ratio (E/Al = 267 mg mL<sup>–1</sup>), a high discharge capacity over 30 mAh cm<sup>–2</sup> is achieved (anode utilization &gt;24%). Moreover, molded batteries featuring structural engineering innovations can deliver 130 mAh at 1 mA cm<sup>–2</sup> (anode utilization &gt;94%). This research establishes a universal φ-based design principle for metal-air battery electrolytes, balancing corrosion inhibition and activation kinetics through thermodynamic regulation.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 26\",\"pages\":\"38172–38180\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c08218\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c08218","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水铝空气电池(AABs)作为一种可持续的能源转换技术,前景广阔。然而,他们遇到了重大的挑战,包括阳极在碱性电解质中的自腐蚀和中性nacl基系统中的钝化。在此,我们提出了一种离子电位(φ)引导设计的NH4Cl/MnCl2中性电解质,通过调节水解平衡将界面pH维持在4.1和4.4之间。通过现场pH监测和综合表征分析表明,选择的NH4+和Mn2+ (φ = 29.85)协同抑制Al(OH)3钝化层,同时抑制析氢。优化后的电解质输出电压高达0.97 V(比纯NaCl体系提高20%),阳极利用率超过84.5%,比容量为2516.5 mAh g-1。电化学阻抗谱(EIS)结果表明,与传统电解质相比,该电解质的电荷转移电阻降低了一个数量级。在swagelak型电池中,电解铝阳极比有限(E/Al = 267 mg mL-1),可实现超过30 mAh cm-2的高放电容量(阳极利用率>;24%)。此外,具有结构工程创新的模制电池可以在1毫安厘米- 2时提供130毫安时的电量(阳极利用率>;94%)。本研究建立了一种通用的基于φ的金属-空气电池电解质设计原则,通过热力学调节平衡腐蚀抑制和活化动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ionic Potential-Driven Interfacial pH Control Enables High Anode Utilization for Neutral Aluminum-Air Batteries

Ionic Potential-Driven Interfacial pH Control Enables High Anode Utilization for Neutral Aluminum-Air Batteries

Ionic Potential-Driven Interfacial pH Control Enables High Anode Utilization for Neutral Aluminum-Air Batteries

Aqueous aluminum-air batteries (AABs) hold great promise as a sustainable energy conversion technology. However, they encounter significant challenges, including self-corrosion of the anode in alkaline electrolytes and passivation in neutral NaCl-based systems. Herein, we propose an ionic potential (φ)-guided design of a NH4Cl/MnCl2 neutral electrolyte that maintains interfacial pH between 4.1 and 4.4 via regulated hydrolysis equilibrium. Selected NH4+ and Mn2+ (φ = 29.85) synergistically inhibit Al(OH)3 passivation layers while suppressing hydrogen evolution, as evidenced by in situ pH monitoring and comprehensive characterization analysis. The optimized electrolyte exhibits a high output voltage of 0.97 V (20% improvement over pure NaCl systems) and an anode utilization efficiency exceeding 84.5%, corresponding to a specific capacity of 2516.5 mAh g–1. Electrochemical impedance spectroscopy (EIS) results indicate that the charge-transfer resistance is reduced by an order of magnitude when compared with conventional electrolytes. In Swagelok-type cells with a restricted electrolyte-to-Al anode ratio (E/Al = 267 mg mL–1), a high discharge capacity over 30 mAh cm–2 is achieved (anode utilization >24%). Moreover, molded batteries featuring structural engineering innovations can deliver 130 mAh at 1 mA cm–2 (anode utilization >94%). This research establishes a universal φ-based design principle for metal-air battery electrolytes, balancing corrosion inhibition and activation kinetics through thermodynamic regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信