金属(Zn, Cu, Fe)离子电池催化阴极的研究进展

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-17 DOI:10.1021/acsnano.5c05567
Honghai Wang, Lei Hu, Huiting Xu, Jiapeng Liu
{"title":"金属(Zn, Cu, Fe)离子电池催化阴极的研究进展","authors":"Honghai Wang, Lei Hu, Huiting Xu, Jiapeng Liu","doi":"10.1021/acsnano.5c05567","DOIUrl":null,"url":null,"abstract":"Aqueous batteries with conversion mechanisms show promise for large-scale energy storage due to the inherent safety, cost-effectiveness, high energy density, and eco-friendly advantages. However, redox species migration and sluggish kinetics critically impede the further development of aqueous-conversion batteries. The integration of catalytically active sites into host cathode materials has been proposed as an effective solution to these challenges, with notable advancements in research. This review systematically summarizes recent advances in catalytic host materials for aqueous metal-ion batteries (zinc-iodine, zinc-bromide, zinc-sulfur, zinc-selenium, zinc-tellurium, copper-sulfur, and iron-iodine), analyzing their catalytic mechanisms and conversion processes. Meanwhile, this review identifies current research limitations while proposing targeted strategies to overcome the challenges. This work deepens the understanding of aqueous metal (Zn, Cu, and Fe)-ion batteries and guides the rational design of advanced energy storage technologies.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"66 1 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Catalytic Host Cathodes for Aqueous Metal (Zn, Cu, Fe)-Ion Batteries\",\"authors\":\"Honghai Wang, Lei Hu, Huiting Xu, Jiapeng Liu\",\"doi\":\"10.1021/acsnano.5c05567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous batteries with conversion mechanisms show promise for large-scale energy storage due to the inherent safety, cost-effectiveness, high energy density, and eco-friendly advantages. However, redox species migration and sluggish kinetics critically impede the further development of aqueous-conversion batteries. The integration of catalytically active sites into host cathode materials has been proposed as an effective solution to these challenges, with notable advancements in research. This review systematically summarizes recent advances in catalytic host materials for aqueous metal-ion batteries (zinc-iodine, zinc-bromide, zinc-sulfur, zinc-selenium, zinc-tellurium, copper-sulfur, and iron-iodine), analyzing their catalytic mechanisms and conversion processes. Meanwhile, this review identifies current research limitations while proposing targeted strategies to overcome the challenges. This work deepens the understanding of aqueous metal (Zn, Cu, and Fe)-ion batteries and guides the rational design of advanced energy storage technologies.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"66 1 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c05567\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c05567","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有转换机制的水电池由于其固有的安全性、成本效益、高能量密度和环保优势,显示出大规模储能的前景。然而,氧化还原物质迁移和缓慢的动力学严重阻碍了水转换电池的进一步发展。将催化活性位点整合到宿主正极材料中已被提出作为解决这些挑战的有效方法,并取得了显著的研究进展。本文系统地综述了近年来水相金属离子电池催化主体材料(锌-碘、锌-溴化、锌-硫、锌-硒、锌-碲、铜-硫和铁-碘)的研究进展,分析了它们的催化机理和转化过程。同时,这篇综述指出了当前研究的局限性,同时提出了有针对性的策略来克服挑战。这项工作加深了对水金属(Zn、Cu和Fe)离子电池的理解,并指导了先进储能技术的合理设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advances in Catalytic Host Cathodes for Aqueous Metal (Zn, Cu, Fe)-Ion Batteries

Advances in Catalytic Host Cathodes for Aqueous Metal (Zn, Cu, Fe)-Ion Batteries
Aqueous batteries with conversion mechanisms show promise for large-scale energy storage due to the inherent safety, cost-effectiveness, high energy density, and eco-friendly advantages. However, redox species migration and sluggish kinetics critically impede the further development of aqueous-conversion batteries. The integration of catalytically active sites into host cathode materials has been proposed as an effective solution to these challenges, with notable advancements in research. This review systematically summarizes recent advances in catalytic host materials for aqueous metal-ion batteries (zinc-iodine, zinc-bromide, zinc-sulfur, zinc-selenium, zinc-tellurium, copper-sulfur, and iron-iodine), analyzing their catalytic mechanisms and conversion processes. Meanwhile, this review identifies current research limitations while proposing targeted strategies to overcome the challenges. This work deepens the understanding of aqueous metal (Zn, Cu, and Fe)-ion batteries and guides the rational design of advanced energy storage technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信