Yongjin Byun , Gimun Kim , Sungjoon Kim , Sungjun Kim
{"title":"高能效尖峰神经网络无源记忆电阻阵列中复位优势精确突触权映射","authors":"Yongjin Byun , Gimun Kim , Sungjoon Kim , Sungjun Kim","doi":"10.1016/j.nanoen.2025.111261","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel reset-dominant synaptic weight programming strategy for passive memristor crossbar arrays, enabling high-precision neuromorphic computing without external current compliance circuitry. We introduce a naturally formed Overshoot Suppression Layer (OSL) within a Pt/Al/TiO<sub>x</sub>/Al₂O₃/Pt device stack, which intrinsically limits overshoot current during the set process and allows for stable analog switching. Combined with a half-bias programming scheme, this structure significantly suppresses cell-to-cell interference, a critical challenge in high-density memristor arrays. To further enhance weight accuracy, we propose the Initial-Low Resistance State (LRS) scheme, a reset-dominant programming method that minimizes abrupt conductance variation induced by set pulses. Using an incremental step pulse with verification algorithm (ISPVA), we successfully programmed 20 discrete conductance levels with a mean vector-matrix multiplication (VMM) error of 419.8 nA. Notably, 99 % of the weights fell within a 1.5 µA error margin, demonstrating the high precision of our approach. System-level validation was conducted through hardware-based inference using a spiking neural network (SNN) trained on the MNIST dataset, achieving a classification accuracy of 88.85 %, only 1.7 % below the ideal software baseline. This work highlights a scalable and CMOS-compatible solution for achieving accurate, energy-efficient VMM in passive memristor arrays, offering strong potential for next-generation neuromorphic hardware.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"142 ","pages":"Article 111261"},"PeriodicalIF":16.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reset-dominant accurate synaptic weight mapping in passive memristor arrays for energy-efficient spiking neural networks\",\"authors\":\"Yongjin Byun , Gimun Kim , Sungjoon Kim , Sungjun Kim\",\"doi\":\"10.1016/j.nanoen.2025.111261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a novel reset-dominant synaptic weight programming strategy for passive memristor crossbar arrays, enabling high-precision neuromorphic computing without external current compliance circuitry. We introduce a naturally formed Overshoot Suppression Layer (OSL) within a Pt/Al/TiO<sub>x</sub>/Al₂O₃/Pt device stack, which intrinsically limits overshoot current during the set process and allows for stable analog switching. Combined with a half-bias programming scheme, this structure significantly suppresses cell-to-cell interference, a critical challenge in high-density memristor arrays. To further enhance weight accuracy, we propose the Initial-Low Resistance State (LRS) scheme, a reset-dominant programming method that minimizes abrupt conductance variation induced by set pulses. Using an incremental step pulse with verification algorithm (ISPVA), we successfully programmed 20 discrete conductance levels with a mean vector-matrix multiplication (VMM) error of 419.8 nA. Notably, 99 % of the weights fell within a 1.5 µA error margin, demonstrating the high precision of our approach. System-level validation was conducted through hardware-based inference using a spiking neural network (SNN) trained on the MNIST dataset, achieving a classification accuracy of 88.85 %, only 1.7 % below the ideal software baseline. This work highlights a scalable and CMOS-compatible solution for achieving accurate, energy-efficient VMM in passive memristor arrays, offering strong potential for next-generation neuromorphic hardware.</div></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"142 \",\"pages\":\"Article 111261\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285525006202\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525006202","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Reset-dominant accurate synaptic weight mapping in passive memristor arrays for energy-efficient spiking neural networks
This study presents a novel reset-dominant synaptic weight programming strategy for passive memristor crossbar arrays, enabling high-precision neuromorphic computing without external current compliance circuitry. We introduce a naturally formed Overshoot Suppression Layer (OSL) within a Pt/Al/TiOx/Al₂O₃/Pt device stack, which intrinsically limits overshoot current during the set process and allows for stable analog switching. Combined with a half-bias programming scheme, this structure significantly suppresses cell-to-cell interference, a critical challenge in high-density memristor arrays. To further enhance weight accuracy, we propose the Initial-Low Resistance State (LRS) scheme, a reset-dominant programming method that minimizes abrupt conductance variation induced by set pulses. Using an incremental step pulse with verification algorithm (ISPVA), we successfully programmed 20 discrete conductance levels with a mean vector-matrix multiplication (VMM) error of 419.8 nA. Notably, 99 % of the weights fell within a 1.5 µA error margin, demonstrating the high precision of our approach. System-level validation was conducted through hardware-based inference using a spiking neural network (SNN) trained on the MNIST dataset, achieving a classification accuracy of 88.85 %, only 1.7 % below the ideal software baseline. This work highlights a scalable and CMOS-compatible solution for achieving accurate, energy-efficient VMM in passive memristor arrays, offering strong potential for next-generation neuromorphic hardware.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.