Hye-ran Moon , Bo Kyung Cho , Seung Hyun Kang , Ju Hee Ryu , Ick Chan Kwon
{"title":"巨红细胞增多症在癌症治疗中的靶向和利用","authors":"Hye-ran Moon , Bo Kyung Cho , Seung Hyun Kang , Ju Hee Ryu , Ick Chan Kwon","doi":"10.1016/j.jconrel.2025.113962","DOIUrl":null,"url":null,"abstract":"<div><div>Macropinocytosis, a cellular process often hyperactivated in cancers with KRAS mutations or PTEN deficiencies, plays a crucial role in tumor survival and therapy. While inhibiting this pathway has been explored as a strategy to deprive cancer cells of essential nutrients, recent advances in nanotechnology offer an innovative approach that exploits macropinocytosis for selective drug delivery. Engineered therapeutics, including nanoparticles, peptide-drug conjugates, and macromolecule-bound drugs, leverage the elevated macropinocytic activity in tumor cells to enhance drug uptake, thereby improving treatment efficacy while minimizing off-target effects. This review provides a comprehensive examination of the molecular mechanisms regulating macropinocytosis in cancer, addressing both intrinsic factors, such as oncogenic mutations, and extrinsic influences from the tumor microenvironment. We explore both inhibition strategies and therapeutic exploitation of macropinocytosis in cancer therapy, focusing specifically on the latest innovations in engineered therapeutics designed to enhance selective drug delivery. By addressing the challenges of translating macropinocytosis-targeting therapies into clinical practice, including tumor heterogeneity and drug resistance, this review highlights how modulating macropinocytosis presents new opportunities for more effective and personalized cancer treatments.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"385 ","pages":"Article 113962"},"PeriodicalIF":10.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting and exploiting macropinocytosis in cancer therapy\",\"authors\":\"Hye-ran Moon , Bo Kyung Cho , Seung Hyun Kang , Ju Hee Ryu , Ick Chan Kwon\",\"doi\":\"10.1016/j.jconrel.2025.113962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Macropinocytosis, a cellular process often hyperactivated in cancers with KRAS mutations or PTEN deficiencies, plays a crucial role in tumor survival and therapy. While inhibiting this pathway has been explored as a strategy to deprive cancer cells of essential nutrients, recent advances in nanotechnology offer an innovative approach that exploits macropinocytosis for selective drug delivery. Engineered therapeutics, including nanoparticles, peptide-drug conjugates, and macromolecule-bound drugs, leverage the elevated macropinocytic activity in tumor cells to enhance drug uptake, thereby improving treatment efficacy while minimizing off-target effects. This review provides a comprehensive examination of the molecular mechanisms regulating macropinocytosis in cancer, addressing both intrinsic factors, such as oncogenic mutations, and extrinsic influences from the tumor microenvironment. We explore both inhibition strategies and therapeutic exploitation of macropinocytosis in cancer therapy, focusing specifically on the latest innovations in engineered therapeutics designed to enhance selective drug delivery. By addressing the challenges of translating macropinocytosis-targeting therapies into clinical practice, including tumor heterogeneity and drug resistance, this review highlights how modulating macropinocytosis presents new opportunities for more effective and personalized cancer treatments.</div></div>\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":\"385 \",\"pages\":\"Article 113962\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168365925005826\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925005826","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Targeting and exploiting macropinocytosis in cancer therapy
Macropinocytosis, a cellular process often hyperactivated in cancers with KRAS mutations or PTEN deficiencies, plays a crucial role in tumor survival and therapy. While inhibiting this pathway has been explored as a strategy to deprive cancer cells of essential nutrients, recent advances in nanotechnology offer an innovative approach that exploits macropinocytosis for selective drug delivery. Engineered therapeutics, including nanoparticles, peptide-drug conjugates, and macromolecule-bound drugs, leverage the elevated macropinocytic activity in tumor cells to enhance drug uptake, thereby improving treatment efficacy while minimizing off-target effects. This review provides a comprehensive examination of the molecular mechanisms regulating macropinocytosis in cancer, addressing both intrinsic factors, such as oncogenic mutations, and extrinsic influences from the tumor microenvironment. We explore both inhibition strategies and therapeutic exploitation of macropinocytosis in cancer therapy, focusing specifically on the latest innovations in engineered therapeutics designed to enhance selective drug delivery. By addressing the challenges of translating macropinocytosis-targeting therapies into clinical practice, including tumor heterogeneity and drug resistance, this review highlights how modulating macropinocytosis presents new opportunities for more effective and personalized cancer treatments.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.