Lijuan Cao, Mingchuan Pan, Langhua Yu, Chuntao Lv, Dandan Zhao, Wei Wu, Futing Li, Ju Ai, Dongli Gao, Sanwen Huang, Yi Shang, Xuming Luo
{"title":"马铃薯StCERK1是植物对多种病原体免疫的关键调控因子","authors":"Lijuan Cao, Mingchuan Pan, Langhua Yu, Chuntao Lv, Dandan Zhao, Wei Wu, Futing Li, Ju Ai, Dongli Gao, Sanwen Huang, Yi Shang, Xuming Luo","doi":"10.1016/j.hpj.2025.03.006","DOIUrl":null,"url":null,"abstract":"Potato (<ce:italic>Solanum tuberosum</ce:italic> L.), the world's third-largest crop, faces significant yield losses due to susceptibility to diverse plant pathogens, impacting global food security. Receptor-like kinases (RLKs) activate plant immunity by recognizing damage- and pathogen-associated molecular patterns (DAMPs and PAMPs). Among these, chitin elicitor receptor kinase 1 (CERK1) is essential for detecting chitin and confers resistance to various pathogens in <ce:italic>Arabidopsis thaliana</ce:italic>, <ce:italic>Oryza sativa</ce:italic>, and <ce:italic>Solanum lycopersicum</ce:italic>. However, generating homozygous mutants in potato is challenging, leaving functions of CERK1 in potato (StCERK1) unexplored. This study identified StCERK1 in potato and applied a tRNA scaffolded gRNA editing strategy with four gRNAs to edit the <ce:italic>StCERK1</ce:italic> gene in tetraploid potato, generating homozygous mutants with high efficiency. We confirmed StCERK1 as a functional kinase and found that it was essential for chitin signal response in potato. It is likely involved in regulating potato immunity through the flavonoid biosynthesis pathway. Furthermore, phenotypic analysis revealed that <ce:italic>stcerk1</ce:italic> mutants exhibit increased susceptibility to <ce:italic>Phytophthora infestans, Alternaria solani,</ce:italic> and <ce:italic>Ralstonia solanacearum</ce:italic> compared to the wild type. Notably, StCERK1 was also implicated in tuber disease resistance. These findings highlight StCERK1 as a key regulator of potato immunity against multiple pathogens, suggesting potential strategies for broad-spectrum crop resistance against diseases in agricultural production through the utilization of plant immune receptors.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"625 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potato StCERK1 is a key regulator of plant immunity against multiple pathogens\",\"authors\":\"Lijuan Cao, Mingchuan Pan, Langhua Yu, Chuntao Lv, Dandan Zhao, Wei Wu, Futing Li, Ju Ai, Dongli Gao, Sanwen Huang, Yi Shang, Xuming Luo\",\"doi\":\"10.1016/j.hpj.2025.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potato (<ce:italic>Solanum tuberosum</ce:italic> L.), the world's third-largest crop, faces significant yield losses due to susceptibility to diverse plant pathogens, impacting global food security. Receptor-like kinases (RLKs) activate plant immunity by recognizing damage- and pathogen-associated molecular patterns (DAMPs and PAMPs). Among these, chitin elicitor receptor kinase 1 (CERK1) is essential for detecting chitin and confers resistance to various pathogens in <ce:italic>Arabidopsis thaliana</ce:italic>, <ce:italic>Oryza sativa</ce:italic>, and <ce:italic>Solanum lycopersicum</ce:italic>. However, generating homozygous mutants in potato is challenging, leaving functions of CERK1 in potato (StCERK1) unexplored. This study identified StCERK1 in potato and applied a tRNA scaffolded gRNA editing strategy with four gRNAs to edit the <ce:italic>StCERK1</ce:italic> gene in tetraploid potato, generating homozygous mutants with high efficiency. We confirmed StCERK1 as a functional kinase and found that it was essential for chitin signal response in potato. It is likely involved in regulating potato immunity through the flavonoid biosynthesis pathway. Furthermore, phenotypic analysis revealed that <ce:italic>stcerk1</ce:italic> mutants exhibit increased susceptibility to <ce:italic>Phytophthora infestans, Alternaria solani,</ce:italic> and <ce:italic>Ralstonia solanacearum</ce:italic> compared to the wild type. Notably, StCERK1 was also implicated in tuber disease resistance. These findings highlight StCERK1 as a key regulator of potato immunity against multiple pathogens, suggesting potential strategies for broad-spectrum crop resistance against diseases in agricultural production through the utilization of plant immune receptors.\",\"PeriodicalId\":13178,\"journal\":{\"name\":\"Horticultural Plant Journal\",\"volume\":\"625 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticultural Plant Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.hpj.2025.03.006\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Plant Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.hpj.2025.03.006","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
Potato StCERK1 is a key regulator of plant immunity against multiple pathogens
Potato (Solanum tuberosum L.), the world's third-largest crop, faces significant yield losses due to susceptibility to diverse plant pathogens, impacting global food security. Receptor-like kinases (RLKs) activate plant immunity by recognizing damage- and pathogen-associated molecular patterns (DAMPs and PAMPs). Among these, chitin elicitor receptor kinase 1 (CERK1) is essential for detecting chitin and confers resistance to various pathogens in Arabidopsis thaliana, Oryza sativa, and Solanum lycopersicum. However, generating homozygous mutants in potato is challenging, leaving functions of CERK1 in potato (StCERK1) unexplored. This study identified StCERK1 in potato and applied a tRNA scaffolded gRNA editing strategy with four gRNAs to edit the StCERK1 gene in tetraploid potato, generating homozygous mutants with high efficiency. We confirmed StCERK1 as a functional kinase and found that it was essential for chitin signal response in potato. It is likely involved in regulating potato immunity through the flavonoid biosynthesis pathway. Furthermore, phenotypic analysis revealed that stcerk1 mutants exhibit increased susceptibility to Phytophthora infestans, Alternaria solani, and Ralstonia solanacearum compared to the wild type. Notably, StCERK1 was also implicated in tuber disease resistance. These findings highlight StCERK1 as a key regulator of potato immunity against multiple pathogens, suggesting potential strategies for broad-spectrum crop resistance against diseases in agricultural production through the utilization of plant immune receptors.
期刊介绍:
Horticultural Plant Journal (HPJ) is an OPEN ACCESS international journal. HPJ publishes research related to all horticultural plants, including fruits, vegetables, ornamental plants, tea plants, and medicinal plants, etc. The journal covers all aspects of horticultural crop sciences, including germplasm resources, genetics and breeding, tillage and cultivation, physiology and biochemistry, ecology, genomics, biotechnology, plant protection, postharvest processing, etc. Article types include Original research papers, Reviews, and Short communications.