Rui He , Yan Guo , Buwen Dong , Neng Luo , Zihui Zhao , Zhibo Gao
{"title":"1961 - 2014年人类活动对西北地区夏季湿润的影响:温室气体和人为气溶胶的作用","authors":"Rui He , Yan Guo , Buwen Dong , Neng Luo , Zihui Zhao , Zhibo Gao","doi":"10.1016/j.atmosres.2025.108289","DOIUrl":null,"url":null,"abstract":"<div><div>A significant increase in summer precipitation was observed in Northwest China (NWC) from 1961 to 2014, posing opportunities and challenges for the local ecosystem and human society. Using multi-model pre-industrial control simulations, and historical and single-forcing simulations from the state-of-the-art MIROC6 model, we attributed this wetting trend and explored the relative roles of individual external forcings. Our finding indicated that external forcing is the primary driver of this observed wetting, with anthropogenic forcing—dominated by greenhouse gases (GHG) and secondarily by anthropogenic aerosols (AA)—playing a significant role than natural forcing. Moisture budget analysis indicated that intensified moisture flux convergence, driven by circulation changes, is a key mechanism behind the NWC wetting in both GHG and AA simulations. Specifically, GHG forcing alters the Asian subtropical westerly jet (ASWJ), inducing a southward shift of the western branch and a weakening of the eastern branch. These changes correspond to an anomalous cyclone (anticyclone) in the west (east) of NWC, promoting moisture convergence over NWC of anomalous southwesterly and southeasterly winds. AA forcing weakens the ASWJ, producing a meridional dipole pattern of an anomalous anticyclone (cyclone) in the north (south), along with lower-level anomalous anticyclone over Mongolia and Northeast China. This circulation pattern facilitates moisture transport from the western North Pacific into inland NWC via anomalous easterlies and intensified moisture flux convergence.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"326 ","pages":"Article 108289"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human influence on summer wetting in Northwest China from 1961 to 2014: Roles of greenhouse gases and anthropogenic aerosols\",\"authors\":\"Rui He , Yan Guo , Buwen Dong , Neng Luo , Zihui Zhao , Zhibo Gao\",\"doi\":\"10.1016/j.atmosres.2025.108289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A significant increase in summer precipitation was observed in Northwest China (NWC) from 1961 to 2014, posing opportunities and challenges for the local ecosystem and human society. Using multi-model pre-industrial control simulations, and historical and single-forcing simulations from the state-of-the-art MIROC6 model, we attributed this wetting trend and explored the relative roles of individual external forcings. Our finding indicated that external forcing is the primary driver of this observed wetting, with anthropogenic forcing—dominated by greenhouse gases (GHG) and secondarily by anthropogenic aerosols (AA)—playing a significant role than natural forcing. Moisture budget analysis indicated that intensified moisture flux convergence, driven by circulation changes, is a key mechanism behind the NWC wetting in both GHG and AA simulations. Specifically, GHG forcing alters the Asian subtropical westerly jet (ASWJ), inducing a southward shift of the western branch and a weakening of the eastern branch. These changes correspond to an anomalous cyclone (anticyclone) in the west (east) of NWC, promoting moisture convergence over NWC of anomalous southwesterly and southeasterly winds. AA forcing weakens the ASWJ, producing a meridional dipole pattern of an anomalous anticyclone (cyclone) in the north (south), along with lower-level anomalous anticyclone over Mongolia and Northeast China. This circulation pattern facilitates moisture transport from the western North Pacific into inland NWC via anomalous easterlies and intensified moisture flux convergence.</div></div>\",\"PeriodicalId\":8600,\"journal\":{\"name\":\"Atmospheric Research\",\"volume\":\"326 \",\"pages\":\"Article 108289\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169809525003813\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809525003813","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Human influence on summer wetting in Northwest China from 1961 to 2014: Roles of greenhouse gases and anthropogenic aerosols
A significant increase in summer precipitation was observed in Northwest China (NWC) from 1961 to 2014, posing opportunities and challenges for the local ecosystem and human society. Using multi-model pre-industrial control simulations, and historical and single-forcing simulations from the state-of-the-art MIROC6 model, we attributed this wetting trend and explored the relative roles of individual external forcings. Our finding indicated that external forcing is the primary driver of this observed wetting, with anthropogenic forcing—dominated by greenhouse gases (GHG) and secondarily by anthropogenic aerosols (AA)—playing a significant role than natural forcing. Moisture budget analysis indicated that intensified moisture flux convergence, driven by circulation changes, is a key mechanism behind the NWC wetting in both GHG and AA simulations. Specifically, GHG forcing alters the Asian subtropical westerly jet (ASWJ), inducing a southward shift of the western branch and a weakening of the eastern branch. These changes correspond to an anomalous cyclone (anticyclone) in the west (east) of NWC, promoting moisture convergence over NWC of anomalous southwesterly and southeasterly winds. AA forcing weakens the ASWJ, producing a meridional dipole pattern of an anomalous anticyclone (cyclone) in the north (south), along with lower-level anomalous anticyclone over Mongolia and Northeast China. This circulation pattern facilitates moisture transport from the western North Pacific into inland NWC via anomalous easterlies and intensified moisture flux convergence.
期刊介绍:
The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.