合作游戏中的策略选择

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Julian García, Arne Traulsen
{"title":"合作游戏中的策略选择","authors":"Julian García, Arne Traulsen","doi":"10.1073/pnas.2319925121","DOIUrl":null,"url":null,"abstract":"Evolutionary game theory (EGT) has been pivotal in the study of cooperation, offering formal models that account for how cooperation may arise in groups of selfish, but simple agents. This is done by inspecting the complex dynamics arising from simple interactions between a few strategies in a large population. As such, the strategies at stake are typically hand-picked by the modeler, resulting in a system with many more individuals in the population than strategies available to them. In the presence of noise and with multiple equilibria, the choice of strategies can considerably alter the emergent dynamics. As a result, model outcomes may not be robust to how the strategy set is chosen, sometimes misrepresenting the conditions required for cooperation to emerge. We propose three principles that can lead to a more systematic choice of the strategies in EGT models of cooperation. These are the inclusion of all computationally equivalent strategies; explicit microeconomic models of interactions, and a connection between stylized facts and model assumptions. Further, we argue that new methods arising in AI may offer a promising path toward richer models. These richer models can push the field of cooperation forward together with the principles described above. At the same time, AI may benefit from connecting to the more abstract models of EGT. We provide and discuss examples to substantiate these claims.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"6 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Picking strategies in games of cooperation\",\"authors\":\"Julian García, Arne Traulsen\",\"doi\":\"10.1073/pnas.2319925121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary game theory (EGT) has been pivotal in the study of cooperation, offering formal models that account for how cooperation may arise in groups of selfish, but simple agents. This is done by inspecting the complex dynamics arising from simple interactions between a few strategies in a large population. As such, the strategies at stake are typically hand-picked by the modeler, resulting in a system with many more individuals in the population than strategies available to them. In the presence of noise and with multiple equilibria, the choice of strategies can considerably alter the emergent dynamics. As a result, model outcomes may not be robust to how the strategy set is chosen, sometimes misrepresenting the conditions required for cooperation to emerge. We propose three principles that can lead to a more systematic choice of the strategies in EGT models of cooperation. These are the inclusion of all computationally equivalent strategies; explicit microeconomic models of interactions, and a connection between stylized facts and model assumptions. Further, we argue that new methods arising in AI may offer a promising path toward richer models. These richer models can push the field of cooperation forward together with the principles described above. At the same time, AI may benefit from connecting to the more abstract models of EGT. We provide and discuss examples to substantiate these claims.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2319925121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2319925121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

进化博弈论(EGT)在合作研究中起着关键作用,它提供了正式的模型来解释合作是如何在自私但简单的主体群体中产生的。这是通过检查大群体中几种策略之间的简单相互作用所产生的复杂动态来完成的。因此,利害攸关的策略通常是由建模者精心挑选的,导致系统中个体的数量远远超过他们可用的策略。在存在噪声和多重均衡的情况下,策略的选择可以在很大程度上改变涌现动力学。因此,模型结果可能对如何选择策略集不具有鲁棒性,有时会歪曲合作出现所需的条件。我们提出了三项原则,可以使我们更系统地选择EGT合作模式中的战略。包括所有计算等效的策略;明确的相互作用的微观经济模型,以及程式化事实和模型假设之间的联系。此外,我们认为人工智能中出现的新方法可能为更丰富的模型提供一条有希望的道路。这些更丰富的模型可以与上述原则一起推动合作领域的发展。与此同时,人工智能可能会从连接到更抽象的EGT模型中受益。我们提供并讨论了一些例子来证实这些说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Picking strategies in games of cooperation
Evolutionary game theory (EGT) has been pivotal in the study of cooperation, offering formal models that account for how cooperation may arise in groups of selfish, but simple agents. This is done by inspecting the complex dynamics arising from simple interactions between a few strategies in a large population. As such, the strategies at stake are typically hand-picked by the modeler, resulting in a system with many more individuals in the population than strategies available to them. In the presence of noise and with multiple equilibria, the choice of strategies can considerably alter the emergent dynamics. As a result, model outcomes may not be robust to how the strategy set is chosen, sometimes misrepresenting the conditions required for cooperation to emerge. We propose three principles that can lead to a more systematic choice of the strategies in EGT models of cooperation. These are the inclusion of all computationally equivalent strategies; explicit microeconomic models of interactions, and a connection between stylized facts and model assumptions. Further, we argue that new methods arising in AI may offer a promising path toward richer models. These richer models can push the field of cooperation forward together with the principles described above. At the same time, AI may benefit from connecting to the more abstract models of EGT. We provide and discuss examples to substantiate these claims.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信