在机器学习引导下,在功能化MXenes上发现了热动力学稳定的单原子催化剂,用于增强氧还原和进化反应

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hengquan Guo and Seung Geol Lee
{"title":"在机器学习引导下,在功能化MXenes上发现了热动力学稳定的单原子催化剂,用于增强氧还原和进化反应","authors":"Hengquan Guo and Seung Geol Lee","doi":"10.1039/D5TA02929E","DOIUrl":null,"url":null,"abstract":"<p >The transition to sustainable energy systems necessitates the development of efficient, cost-effective, and stable electrocatalysts, particularly for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this study, we investigate transition-metal-doped MXene surfaces (Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub>2</sub></small>, T = O, S, F, Cl, Se) as single-atom catalysts (SACs) for ORR applications, employing a combination of density functional theory (DFT) and machine learning (ML) approaches. A comprehensive dataset encompassing binding, cohesive, and formation energies was generated through DFT calculations and used to train various ML models. Among them, convolutional neural networks (CNNs) achieved the highest prediction accuracy, exhibiting the lowest RMSE and an <em>R</em><small><sup>2</sup></small> value exceeding 0.96 on the testing data. SHAP analysis revealed that catalyst surface properties predominantly influence adsorption behavior. Thermodynamic screening identified multiple stable SAC configurations, notably Ni–Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>S<small><sub>2</sub></small> and Cu–Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>S<small><sub>2</sub></small>, which demonstrated low overpotentials and favorable ORR/OER performance. Specifically, Ni–Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>S<small><sub>2</sub></small> showed low overpotentials of 0.31 eV for the oxygen reduction reaction (ORR) and 0.40 eV for the oxygen evolution reaction (OER), while Cu–Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>S<small><sub>2</sub></small> displayed overpotentials of 0.35 eV for the ORR and 0.74 eV for the OER. The study further establishes linear scaling relationships among adsorption energies of reaction intermediates, providing insights for rational catalyst design. These findings highlight the potential of ML-accelerated materials discovery to guide the development of next-generation bifunctional electrocatalysts.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 28","pages":" 22730-22744"},"PeriodicalIF":9.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-guided discovery of thermodynamically stable single-atom catalysts on functionalized MXenes for enhanced oxygen reduction and evolution reactions†\",\"authors\":\"Hengquan Guo and Seung Geol Lee\",\"doi\":\"10.1039/D5TA02929E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The transition to sustainable energy systems necessitates the development of efficient, cost-effective, and stable electrocatalysts, particularly for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this study, we investigate transition-metal-doped MXene surfaces (Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub>2</sub></small>, T = O, S, F, Cl, Se) as single-atom catalysts (SACs) for ORR applications, employing a combination of density functional theory (DFT) and machine learning (ML) approaches. A comprehensive dataset encompassing binding, cohesive, and formation energies was generated through DFT calculations and used to train various ML models. Among them, convolutional neural networks (CNNs) achieved the highest prediction accuracy, exhibiting the lowest RMSE and an <em>R</em><small><sup>2</sup></small> value exceeding 0.96 on the testing data. SHAP analysis revealed that catalyst surface properties predominantly influence adsorption behavior. Thermodynamic screening identified multiple stable SAC configurations, notably Ni–Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>S<small><sub>2</sub></small> and Cu–Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>S<small><sub>2</sub></small>, which demonstrated low overpotentials and favorable ORR/OER performance. Specifically, Ni–Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>S<small><sub>2</sub></small> showed low overpotentials of 0.31 eV for the oxygen reduction reaction (ORR) and 0.40 eV for the oxygen evolution reaction (OER), while Cu–Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>S<small><sub>2</sub></small> displayed overpotentials of 0.35 eV for the ORR and 0.74 eV for the OER. The study further establishes linear scaling relationships among adsorption energies of reaction intermediates, providing insights for rational catalyst design. These findings highlight the potential of ML-accelerated materials discovery to guide the development of next-generation bifunctional electrocatalysts.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 28\",\"pages\":\" 22730-22744\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02929e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02929e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

向可持续能源系统的过渡需要开发高效、经济、稳定的电催化剂,特别是氧还原反应(ORR)和析氧反应(OER)。在这项研究中,我们研究了过渡金属掺杂MXene表面(Ti3C2T2, T = O, S, F, Cl, Se)作为ORR应用的单原子催化剂(SACs),采用密度泛函理论(DFT)和机器学习(ML)方法的结合。通过DFT计算生成了包含结合、内聚和形成能量的综合数据集,并用于训练各种ML模型。其中,卷积神经网络(cnn)的预测准确率最高,在测试数据上RMSE最低,R2值超过0.96。SHAP分析表明,催化剂表面性质主要影响吸附行为。热力学筛选发现了多种稳定的SAC构型,其中Ni-Ti3C2S2和Cu-Ti3C2S2表现出低过电位和良好的ORR/OER性能。Ni-Ti3C2S2在氧还原反应(ORR)和氧析反应(OER)中表现出较低的过电位,分别为0.31 eV和0.40 eV, Cu-Ti3C2S2在ORR和OER中表现出0.35 eV和0.74 eV的过电位。该研究进一步建立了反应中间体吸附能之间的线性标度关系,为合理设计催化剂提供了见解。这些发现突出了ml加速材料发现的潜力,以指导下一代双功能电催化剂的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning-guided discovery of thermodynamically stable single-atom catalysts on functionalized MXenes for enhanced oxygen reduction and evolution reactions†

Machine learning-guided discovery of thermodynamically stable single-atom catalysts on functionalized MXenes for enhanced oxygen reduction and evolution reactions†

Machine learning-guided discovery of thermodynamically stable single-atom catalysts on functionalized MXenes for enhanced oxygen reduction and evolution reactions†

The transition to sustainable energy systems necessitates the development of efficient, cost-effective, and stable electrocatalysts, particularly for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this study, we investigate transition-metal-doped MXene surfaces (Ti3C2T2, T = O, S, F, Cl, Se) as single-atom catalysts (SACs) for ORR applications, employing a combination of density functional theory (DFT) and machine learning (ML) approaches. A comprehensive dataset encompassing binding, cohesive, and formation energies was generated through DFT calculations and used to train various ML models. Among them, convolutional neural networks (CNNs) achieved the highest prediction accuracy, exhibiting the lowest RMSE and an R2 value exceeding 0.96 on the testing data. SHAP analysis revealed that catalyst surface properties predominantly influence adsorption behavior. Thermodynamic screening identified multiple stable SAC configurations, notably Ni–Ti3C2S2 and Cu–Ti3C2S2, which demonstrated low overpotentials and favorable ORR/OER performance. Specifically, Ni–Ti3C2S2 showed low overpotentials of 0.31 eV for the oxygen reduction reaction (ORR) and 0.40 eV for the oxygen evolution reaction (OER), while Cu–Ti3C2S2 displayed overpotentials of 0.35 eV for the ORR and 0.74 eV for the OER. The study further establishes linear scaling relationships among adsorption energies of reaction intermediates, providing insights for rational catalyst design. These findings highlight the potential of ML-accelerated materials discovery to guide the development of next-generation bifunctional electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信