Philip Schmiege, Dawid Jaślan, Michael Fine, Nidish Ponath Sadanandan, Alexandra Hatton, Nadia Elghobashi-Meinhardt, Christian Grimm, Xiaochun Li
{"title":"不同状态的TRPML2揭示了TRPML家族的激活和调节原理","authors":"Philip Schmiege, Dawid Jaślan, Michael Fine, Nidish Ponath Sadanandan, Alexandra Hatton, Nadia Elghobashi-Meinhardt, Christian Grimm, Xiaochun Li","doi":"10.1038/s41467-025-60710-8","DOIUrl":null,"url":null,"abstract":"<p>TRPML2 activity is critical for endolysosomal integrity and chemokine secretion, and can be modulated by various ligands. Interestingly, two ML-SI3 isomers regulate TRPML2 oppositely. The molecular mechanism underlying this unique isomeric preference as well as the TRPML2 agonistic mechanism remains unknown. Here, we present six cryo-EM structures of human TRPML2 in distinct states revealing that the π-bulge of the S6 undergoes a π-α transition upon agonist binding, highlighting the remarkable role of the π-bulge in ion channel regulation. Moreover, we identify that PI(3,5)P<sub>2</sub> allosterically affects the pose of ML2-SA1, a TRPML2 specific activator, resulting in an open channel without the π-α transition. Functional and structural studies show that mutating the S5 of TRPML1 to that of TRPML2 enables the mutated TRPML1 to be activated by (+)ML-SI3 and ML2-SA1. Thus, our work elucidates the activation mechanism of TRPML channels and paves the way for the development of selective TRPML modulators.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"13 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TRPML2 in distinct states reveals the activation and modulation principles of the TRPML family\",\"authors\":\"Philip Schmiege, Dawid Jaślan, Michael Fine, Nidish Ponath Sadanandan, Alexandra Hatton, Nadia Elghobashi-Meinhardt, Christian Grimm, Xiaochun Li\",\"doi\":\"10.1038/s41467-025-60710-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>TRPML2 activity is critical for endolysosomal integrity and chemokine secretion, and can be modulated by various ligands. Interestingly, two ML-SI3 isomers regulate TRPML2 oppositely. The molecular mechanism underlying this unique isomeric preference as well as the TRPML2 agonistic mechanism remains unknown. Here, we present six cryo-EM structures of human TRPML2 in distinct states revealing that the π-bulge of the S6 undergoes a π-α transition upon agonist binding, highlighting the remarkable role of the π-bulge in ion channel regulation. Moreover, we identify that PI(3,5)P<sub>2</sub> allosterically affects the pose of ML2-SA1, a TRPML2 specific activator, resulting in an open channel without the π-α transition. Functional and structural studies show that mutating the S5 of TRPML1 to that of TRPML2 enables the mutated TRPML1 to be activated by (+)ML-SI3 and ML2-SA1. Thus, our work elucidates the activation mechanism of TRPML channels and paves the way for the development of selective TRPML modulators.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60710-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60710-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
TRPML2 in distinct states reveals the activation and modulation principles of the TRPML family
TRPML2 activity is critical for endolysosomal integrity and chemokine secretion, and can be modulated by various ligands. Interestingly, two ML-SI3 isomers regulate TRPML2 oppositely. The molecular mechanism underlying this unique isomeric preference as well as the TRPML2 agonistic mechanism remains unknown. Here, we present six cryo-EM structures of human TRPML2 in distinct states revealing that the π-bulge of the S6 undergoes a π-α transition upon agonist binding, highlighting the remarkable role of the π-bulge in ion channel regulation. Moreover, we identify that PI(3,5)P2 allosterically affects the pose of ML2-SA1, a TRPML2 specific activator, resulting in an open channel without the π-α transition. Functional and structural studies show that mutating the S5 of TRPML1 to that of TRPML2 enables the mutated TRPML1 to be activated by (+)ML-SI3 and ML2-SA1. Thus, our work elucidates the activation mechanism of TRPML channels and paves the way for the development of selective TRPML modulators.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.