{"title":"揭示玻璃中隐藏的颗粒级缺陷","authors":"Yuan-Chao Hu, Hajime Tanaka","doi":"10.1038/s41467-025-60781-7","DOIUrl":null,"url":null,"abstract":"<p>In crystals, defects are well-defined and crucial to their mechanical properties. In contrast, the structural disorder in glasses makes it challenging to directly identify defects at the particle level. However, low-frequency quasi-localised modes (QLMs) in glasses provide valuable insights, acting as mechanical defects associated with shear transformation zones and soft spots. Using molecular dynamics simulations of two-dimensional glasses, we identify a particle-level defect responsible for generating QLMs. The primary QLM originates from a “key-core” square of four particles vibrating in a two-in, two-out pattern, interpretable as a microscopic Eshelby inclusion. The motion of these particles induces nearby volumetric and far-field shear deformations, forming a characteristic four-leaf pattern. Despite the structural isotropy of the glass, these QLMs introduce notable mechanical anisotropy, particularly in nano-sized glasses. Crucially, pinning the key-core particles dramatically reduces shear modulus anisotropy, confirming their role as “localised particle-level defects.” This discovery deepens our understanding of glass defects and offers valuable insights for nanoscale glass applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"44 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling hidden particle-level defects in glasses\",\"authors\":\"Yuan-Chao Hu, Hajime Tanaka\",\"doi\":\"10.1038/s41467-025-60781-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In crystals, defects are well-defined and crucial to their mechanical properties. In contrast, the structural disorder in glasses makes it challenging to directly identify defects at the particle level. However, low-frequency quasi-localised modes (QLMs) in glasses provide valuable insights, acting as mechanical defects associated with shear transformation zones and soft spots. Using molecular dynamics simulations of two-dimensional glasses, we identify a particle-level defect responsible for generating QLMs. The primary QLM originates from a “key-core” square of four particles vibrating in a two-in, two-out pattern, interpretable as a microscopic Eshelby inclusion. The motion of these particles induces nearby volumetric and far-field shear deformations, forming a characteristic four-leaf pattern. Despite the structural isotropy of the glass, these QLMs introduce notable mechanical anisotropy, particularly in nano-sized glasses. Crucially, pinning the key-core particles dramatically reduces shear modulus anisotropy, confirming their role as “localised particle-level defects.” This discovery deepens our understanding of glass defects and offers valuable insights for nanoscale glass applications.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60781-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60781-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Unveiling hidden particle-level defects in glasses
In crystals, defects are well-defined and crucial to their mechanical properties. In contrast, the structural disorder in glasses makes it challenging to directly identify defects at the particle level. However, low-frequency quasi-localised modes (QLMs) in glasses provide valuable insights, acting as mechanical defects associated with shear transformation zones and soft spots. Using molecular dynamics simulations of two-dimensional glasses, we identify a particle-level defect responsible for generating QLMs. The primary QLM originates from a “key-core” square of four particles vibrating in a two-in, two-out pattern, interpretable as a microscopic Eshelby inclusion. The motion of these particles induces nearby volumetric and far-field shear deformations, forming a characteristic four-leaf pattern. Despite the structural isotropy of the glass, these QLMs introduce notable mechanical anisotropy, particularly in nano-sized glasses. Crucially, pinning the key-core particles dramatically reduces shear modulus anisotropy, confirming their role as “localised particle-level defects.” This discovery deepens our understanding of glass defects and offers valuable insights for nanoscale glass applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.