Eryka Gaslac-Zumaeta, Kelvin James Llanos-Gómez, Segundo Manuel Oliva-Cruz, Jorge Ronny Díaz-Valderrama
{"title":"秘鲁亚马逊地区原生可可叶层中附生酵母的冻干和野外存活。","authors":"Eryka Gaslac-Zumaeta, Kelvin James Llanos-Gómez, Segundo Manuel Oliva-Cruz, Jorge Ronny Díaz-Valderrama","doi":"10.1089/bio.2024.0185","DOIUrl":null,"url":null,"abstract":"<p><p>Epiphytic yeasts are promising biocontrol agents of plant diseases but preserving and transferring them to the field is challenging. Here, we studied six cost-effective lyophilization protective agents to preserve seven strains of Amazonian yeast species isolated from the phyllosphere of native cacao (<i>Theobroma cacao</i>) in Peru. We evaluated the viability of yeasts at 30 and 90 days post-lyophilization <i>in vitro</i>, and their survival after controlled inoculation on cacao fruits in the field. The best protective agents were maltodextrin, honey + skim milk, and honey. <i>Wickerhamomyces anomalus</i> KLG-014 and <i>Wickerhamomyces</i> sp. EGZ-38 showed higher than 97.3% viability after 30 days when lyophilized with maltodextrin. Additionally, <i>Candida</i> sp. KLG-103 showed a viability greater than 50% after 30 days when lyophilized with honey + skim milk. At 90 days, <i>W. anomalus</i> KLG-014, <i>Hannaella theobromatis</i> KLG-063, and <i>Kwoniella heveanensis</i> EGZ-07 showed a viability greater than 20%, with the latter showing an outstanding 100% viability, when lyophilized with honey + skim milk. Conversely, sodium alginate was the least protective agent, as yeast showed 0% viability. In the field, <i>W. anomalus</i> KLG-014, <i>K. heveanensis</i> EGZ-07, <i>Debaryomyces hansenii</i> EGZ-31, and <i>Wickerhamomyces</i> sp. EGZ-38 were successfully re-isolated from the surface of cacao fruits under all treatments after 30 days, except for sodium alginate. This was corroborated via morphological and molecular evidence. This study demonstrates that maltodextrin, honey, and skim milk are suitable for ensuring the <i>in vitro</i> viability of biocontrol yeasts up to 90 days after lyophilization, and their survival up to 30 days after inoculation on cacao fruits in the field. This is a first step toward the development of a biocontrol alternative to mitigate cacao pathogens using native microorganisms from the Amazon in Peru.</p>","PeriodicalId":55358,"journal":{"name":"Biopreservation and Biobanking","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lyophilization and Field Survival of Epiphytic Yeasts from the Phyllosphere of Native Cacao in the Peruvian Amazon.\",\"authors\":\"Eryka Gaslac-Zumaeta, Kelvin James Llanos-Gómez, Segundo Manuel Oliva-Cruz, Jorge Ronny Díaz-Valderrama\",\"doi\":\"10.1089/bio.2024.0185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epiphytic yeasts are promising biocontrol agents of plant diseases but preserving and transferring them to the field is challenging. Here, we studied six cost-effective lyophilization protective agents to preserve seven strains of Amazonian yeast species isolated from the phyllosphere of native cacao (<i>Theobroma cacao</i>) in Peru. We evaluated the viability of yeasts at 30 and 90 days post-lyophilization <i>in vitro</i>, and their survival after controlled inoculation on cacao fruits in the field. The best protective agents were maltodextrin, honey + skim milk, and honey. <i>Wickerhamomyces anomalus</i> KLG-014 and <i>Wickerhamomyces</i> sp. EGZ-38 showed higher than 97.3% viability after 30 days when lyophilized with maltodextrin. Additionally, <i>Candida</i> sp. KLG-103 showed a viability greater than 50% after 30 days when lyophilized with honey + skim milk. At 90 days, <i>W. anomalus</i> KLG-014, <i>Hannaella theobromatis</i> KLG-063, and <i>Kwoniella heveanensis</i> EGZ-07 showed a viability greater than 20%, with the latter showing an outstanding 100% viability, when lyophilized with honey + skim milk. Conversely, sodium alginate was the least protective agent, as yeast showed 0% viability. In the field, <i>W. anomalus</i> KLG-014, <i>K. heveanensis</i> EGZ-07, <i>Debaryomyces hansenii</i> EGZ-31, and <i>Wickerhamomyces</i> sp. EGZ-38 were successfully re-isolated from the surface of cacao fruits under all treatments after 30 days, except for sodium alginate. This was corroborated via morphological and molecular evidence. This study demonstrates that maltodextrin, honey, and skim milk are suitable for ensuring the <i>in vitro</i> viability of biocontrol yeasts up to 90 days after lyophilization, and their survival up to 30 days after inoculation on cacao fruits in the field. This is a first step toward the development of a biocontrol alternative to mitigate cacao pathogens using native microorganisms from the Amazon in Peru.</p>\",\"PeriodicalId\":55358,\"journal\":{\"name\":\"Biopreservation and Biobanking\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopreservation and Biobanking\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/bio.2024.0185\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopreservation and Biobanking","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2024.0185","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lyophilization and Field Survival of Epiphytic Yeasts from the Phyllosphere of Native Cacao in the Peruvian Amazon.
Epiphytic yeasts are promising biocontrol agents of plant diseases but preserving and transferring them to the field is challenging. Here, we studied six cost-effective lyophilization protective agents to preserve seven strains of Amazonian yeast species isolated from the phyllosphere of native cacao (Theobroma cacao) in Peru. We evaluated the viability of yeasts at 30 and 90 days post-lyophilization in vitro, and their survival after controlled inoculation on cacao fruits in the field. The best protective agents were maltodextrin, honey + skim milk, and honey. Wickerhamomyces anomalus KLG-014 and Wickerhamomyces sp. EGZ-38 showed higher than 97.3% viability after 30 days when lyophilized with maltodextrin. Additionally, Candida sp. KLG-103 showed a viability greater than 50% after 30 days when lyophilized with honey + skim milk. At 90 days, W. anomalus KLG-014, Hannaella theobromatis KLG-063, and Kwoniella heveanensis EGZ-07 showed a viability greater than 20%, with the latter showing an outstanding 100% viability, when lyophilized with honey + skim milk. Conversely, sodium alginate was the least protective agent, as yeast showed 0% viability. In the field, W. anomalus KLG-014, K. heveanensis EGZ-07, Debaryomyces hansenii EGZ-31, and Wickerhamomyces sp. EGZ-38 were successfully re-isolated from the surface of cacao fruits under all treatments after 30 days, except for sodium alginate. This was corroborated via morphological and molecular evidence. This study demonstrates that maltodextrin, honey, and skim milk are suitable for ensuring the in vitro viability of biocontrol yeasts up to 90 days after lyophilization, and their survival up to 30 days after inoculation on cacao fruits in the field. This is a first step toward the development of a biocontrol alternative to mitigate cacao pathogens using native microorganisms from the Amazon in Peru.
Biopreservation and BiobankingBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
自引率
12.50%
发文量
114
期刊介绍:
Biopreservation and Biobanking is the first journal to provide a unifying forum for the peer-reviewed communication of recent advances in the emerging and evolving field of biospecimen procurement, processing, preservation and banking, distribution, and use. The Journal publishes a range of original articles focusing on current challenges and problems in biopreservation, and advances in methods to address these issues related to the processing of macromolecules, cells, and tissues for research.
In a new section dedicated to Emerging Markets and Technologies, the Journal highlights the emergence of new markets and technologies that are either adopting or disrupting the biobank framework as they imprint on society. The solutions presented here are anticipated to help drive innovation within the biobank community.
Biopreservation and Biobanking also explores the ethical, legal, and societal considerations surrounding biobanking and biorepository operation. Ideas and practical solutions relevant to improved quality, efficiency, and sustainability of repositories, and relating to their management, operation and oversight are discussed as well.