Andrew Ackerman, Zhengwu Zhang, Jan Hannig, Jack Prothero, J S Marron
{"title":"基于子空间分析的多面神经成像数据集成。","authors":"Andrew Ackerman, Zhengwu Zhang, Jan Hannig, Jack Prothero, J S Marron","doi":"10.1017/psy.2025.10020","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroimaging studies, such as the Human Connectome Project (HCP), often collect multifaceted data to study the human brain. However, these data are often analyzed in a pairwise fashion, which can hinder our understanding of how different brain-related measures interact. In this study, we analyze the multi-block HCP data using data integration via analysis of subspaces (DIVAS). We integrate structural and functional brain connectivity, substance use, cognition, and genetics in an exhaustive five-block analysis. This gives rise to the important finding that genetics is the single data modality most predictive of brain connectivity, outside of brain connectivity itself. Nearly 14% of the variation in functional connectivity (FC) and roughly 12% of the variation in structural connectivity (SC) is attributed to shared spaces with genetics. Moreover, investigations of shared space loadings provide interpretable associations between particular brain regions and drivers of variability. Novel Jackstraw hypothesis tests are developed for the DIVAS framework to establish statistically significant loadings. For example, in the (FC, SC, and substance use) subspace, these novel hypothesis tests highlight largely negative functional and structural connections suggesting the brain's role in physiological responses to increased substance use. Our findings are validated on genetically relevant subjects not studied in the main analysis.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-22"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifaceted Neuroimaging Data Integration via Analysis of Subspaces.\",\"authors\":\"Andrew Ackerman, Zhengwu Zhang, Jan Hannig, Jack Prothero, J S Marron\",\"doi\":\"10.1017/psy.2025.10020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroimaging studies, such as the Human Connectome Project (HCP), often collect multifaceted data to study the human brain. However, these data are often analyzed in a pairwise fashion, which can hinder our understanding of how different brain-related measures interact. In this study, we analyze the multi-block HCP data using data integration via analysis of subspaces (DIVAS). We integrate structural and functional brain connectivity, substance use, cognition, and genetics in an exhaustive five-block analysis. This gives rise to the important finding that genetics is the single data modality most predictive of brain connectivity, outside of brain connectivity itself. Nearly 14% of the variation in functional connectivity (FC) and roughly 12% of the variation in structural connectivity (SC) is attributed to shared spaces with genetics. Moreover, investigations of shared space loadings provide interpretable associations between particular brain regions and drivers of variability. Novel Jackstraw hypothesis tests are developed for the DIVAS framework to establish statistically significant loadings. For example, in the (FC, SC, and substance use) subspace, these novel hypothesis tests highlight largely negative functional and structural connections suggesting the brain's role in physiological responses to increased substance use. Our findings are validated on genetically relevant subjects not studied in the main analysis.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":\" \",\"pages\":\"1-22\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1017/psy.2025.10020\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/psy.2025.10020","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multifaceted Neuroimaging Data Integration via Analysis of Subspaces.
Neuroimaging studies, such as the Human Connectome Project (HCP), often collect multifaceted data to study the human brain. However, these data are often analyzed in a pairwise fashion, which can hinder our understanding of how different brain-related measures interact. In this study, we analyze the multi-block HCP data using data integration via analysis of subspaces (DIVAS). We integrate structural and functional brain connectivity, substance use, cognition, and genetics in an exhaustive five-block analysis. This gives rise to the important finding that genetics is the single data modality most predictive of brain connectivity, outside of brain connectivity itself. Nearly 14% of the variation in functional connectivity (FC) and roughly 12% of the variation in structural connectivity (SC) is attributed to shared spaces with genetics. Moreover, investigations of shared space loadings provide interpretable associations between particular brain regions and drivers of variability. Novel Jackstraw hypothesis tests are developed for the DIVAS framework to establish statistically significant loadings. For example, in the (FC, SC, and substance use) subspace, these novel hypothesis tests highlight largely negative functional and structural connections suggesting the brain's role in physiological responses to increased substance use. Our findings are validated on genetically relevant subjects not studied in the main analysis.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.