{"title":"马铃薯StFtsH4蛋白抑制植物抗病性研究进展","authors":"Siyu Xiao, Jinhui Wang, Zihan Bai, Haibin Jiang, Jiehua Zhu, Zhihui Yang","doi":"10.1111/mpp.70109","DOIUrl":null,"url":null,"abstract":"<p><p>Alternaria solani is an important necrotrophic pathogen causing potato early blight. However, the pathogenic molecular mechanisms of A. solani remain unclear. Previous work identified a specific effector AsCEP20 in A. solani through multi-omics analysis. AsCEP20 is required for the full virulence of A. solani and targets the host chloroplasts. In this study, we screened out 46 candidate proteins that potentially interact with AsCEP20 in Nicotiana benthamiana using co-immunoprecipitation followed by liquid chromatography-tandem mass spectrometry analysis. We identified a candidate target protein in potato, filamentation temperature-sensitive H4 (StFtsH4), which is located in chloroplasts, based on homologous alignment and subcellular localisation analysis. The interaction between AsCEP20 and StFtsH4 was further confirmed by co-immunoprecipitation, yeast two-hybrid assay and bimolecular fluorescence complementation assays. The interaction site between AsCEP20 and StFtsH4 is also the chloroplast. Silencing the potato StFtsH4 gene resulted in suppressed pathogen-associated molecular pattern-triggered reactive oxygen species (ROS) bursts, and defence-related genes were significantly downregulated. These results suggest that StFtsH4 positively regulates plant immunity. Therefore, AsCEP20 targets the chloroplast protein StFtsH4 to promote pathogen infection. AsCEP20 attenuates the efficiency of light energy utilisation in photosynthesis by targeting StFtsH4. These results suggest that AsCEP20 suppresses StFtsH4-mediated potato disease resistance to A. solani. With the increase of light intensity, ROS continued to accumulate in the chloroplast of StFtsH4-silenced plant leaves, while defence-related genes significantly decreased. Our findings reveal that the impaired StFtsH4 function limits plant photosynthesis, thereby affecting immune signalling.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"26 6","pages":"e70109"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167767/pdf/","citationCount":"0","resultStr":"{\"title\":\"Alternaria solani Effector AsCEP20, Essential for Virulence, Targets Potato StFtsH4 Protein to Suppress Plant Disease Resistance.\",\"authors\":\"Siyu Xiao, Jinhui Wang, Zihan Bai, Haibin Jiang, Jiehua Zhu, Zhihui Yang\",\"doi\":\"10.1111/mpp.70109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alternaria solani is an important necrotrophic pathogen causing potato early blight. However, the pathogenic molecular mechanisms of A. solani remain unclear. Previous work identified a specific effector AsCEP20 in A. solani through multi-omics analysis. AsCEP20 is required for the full virulence of A. solani and targets the host chloroplasts. In this study, we screened out 46 candidate proteins that potentially interact with AsCEP20 in Nicotiana benthamiana using co-immunoprecipitation followed by liquid chromatography-tandem mass spectrometry analysis. We identified a candidate target protein in potato, filamentation temperature-sensitive H4 (StFtsH4), which is located in chloroplasts, based on homologous alignment and subcellular localisation analysis. The interaction between AsCEP20 and StFtsH4 was further confirmed by co-immunoprecipitation, yeast two-hybrid assay and bimolecular fluorescence complementation assays. The interaction site between AsCEP20 and StFtsH4 is also the chloroplast. Silencing the potato StFtsH4 gene resulted in suppressed pathogen-associated molecular pattern-triggered reactive oxygen species (ROS) bursts, and defence-related genes were significantly downregulated. These results suggest that StFtsH4 positively regulates plant immunity. Therefore, AsCEP20 targets the chloroplast protein StFtsH4 to promote pathogen infection. AsCEP20 attenuates the efficiency of light energy utilisation in photosynthesis by targeting StFtsH4. These results suggest that AsCEP20 suppresses StFtsH4-mediated potato disease resistance to A. solani. With the increase of light intensity, ROS continued to accumulate in the chloroplast of StFtsH4-silenced plant leaves, while defence-related genes significantly decreased. Our findings reveal that the impaired StFtsH4 function limits plant photosynthesis, thereby affecting immune signalling.</p>\",\"PeriodicalId\":18763,\"journal\":{\"name\":\"Molecular plant pathology\",\"volume\":\"26 6\",\"pages\":\"e70109\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167767/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular plant pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/mpp.70109\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70109","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Alternaria solani Effector AsCEP20, Essential for Virulence, Targets Potato StFtsH4 Protein to Suppress Plant Disease Resistance.
Alternaria solani is an important necrotrophic pathogen causing potato early blight. However, the pathogenic molecular mechanisms of A. solani remain unclear. Previous work identified a specific effector AsCEP20 in A. solani through multi-omics analysis. AsCEP20 is required for the full virulence of A. solani and targets the host chloroplasts. In this study, we screened out 46 candidate proteins that potentially interact with AsCEP20 in Nicotiana benthamiana using co-immunoprecipitation followed by liquid chromatography-tandem mass spectrometry analysis. We identified a candidate target protein in potato, filamentation temperature-sensitive H4 (StFtsH4), which is located in chloroplasts, based on homologous alignment and subcellular localisation analysis. The interaction between AsCEP20 and StFtsH4 was further confirmed by co-immunoprecipitation, yeast two-hybrid assay and bimolecular fluorescence complementation assays. The interaction site between AsCEP20 and StFtsH4 is also the chloroplast. Silencing the potato StFtsH4 gene resulted in suppressed pathogen-associated molecular pattern-triggered reactive oxygen species (ROS) bursts, and defence-related genes were significantly downregulated. These results suggest that StFtsH4 positively regulates plant immunity. Therefore, AsCEP20 targets the chloroplast protein StFtsH4 to promote pathogen infection. AsCEP20 attenuates the efficiency of light energy utilisation in photosynthesis by targeting StFtsH4. These results suggest that AsCEP20 suppresses StFtsH4-mediated potato disease resistance to A. solani. With the increase of light intensity, ROS continued to accumulate in the chloroplast of StFtsH4-silenced plant leaves, while defence-related genes significantly decreased. Our findings reveal that the impaired StFtsH4 function limits plant photosynthesis, thereby affecting immune signalling.
期刊介绍:
Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.