James A Frimpong, Basel Ahmad Shabab, Rohit Pandey, Snehamoy Chatterjee, Gabriel Walton, Alexander S Brand
{"title":"破裂起裂压力对胶结膏体充填体强度的影响。","authors":"James A Frimpong, Basel Ahmad Shabab, Rohit Pandey, Snehamoy Chatterjee, Gabriel Walton, Alexander S Brand","doi":"10.1007/s42461-025-01257-6","DOIUrl":null,"url":null,"abstract":"<p><p>This laboratory-scale study presents the development and validation of a hydraulic fracturing technique to directly measure the tensile strength of cemented paste backfill (CPB), providing an alternative to traditional strength testing methods. Fracture initiation pressure (FIP) was used as the primary measure of CPB strength. Experimental results were compared with traditional benchmark measures such as uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), and critical Mode-I fracture toughness (K<sub>Ic</sub>). Regression analysis of experimental results revealed a strong linear relationship between FIP and these benchmark strength measures, indicating that FIP can be used as a reliable predictor of CPB strength. However, traditional linear elastic failure models did not adequately explain the observed FIP values, as they significantly over-predicted the CPB tensile strength. To address this, the Point Stress (PS) model was applied, which provided a more accurate prediction of tensile strength, especially in cases involving small boreholes. The PS model explained observed effects of borehole size on the material's response to hydraulic pressurization. This study confirms that hydraulic fracturing, interpreted through the PS model, is an effective method for determining CPB strength and provides a practical alternative measure to conventional testing methods.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"42 3","pages":"1305-1323"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158861/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fracture Initiation Pressure as a Measure of Cemented Paste Backfill Strength.\",\"authors\":\"James A Frimpong, Basel Ahmad Shabab, Rohit Pandey, Snehamoy Chatterjee, Gabriel Walton, Alexander S Brand\",\"doi\":\"10.1007/s42461-025-01257-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This laboratory-scale study presents the development and validation of a hydraulic fracturing technique to directly measure the tensile strength of cemented paste backfill (CPB), providing an alternative to traditional strength testing methods. Fracture initiation pressure (FIP) was used as the primary measure of CPB strength. Experimental results were compared with traditional benchmark measures such as uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), and critical Mode-I fracture toughness (K<sub>Ic</sub>). Regression analysis of experimental results revealed a strong linear relationship between FIP and these benchmark strength measures, indicating that FIP can be used as a reliable predictor of CPB strength. However, traditional linear elastic failure models did not adequately explain the observed FIP values, as they significantly over-predicted the CPB tensile strength. To address this, the Point Stress (PS) model was applied, which provided a more accurate prediction of tensile strength, especially in cases involving small boreholes. The PS model explained observed effects of borehole size on the material's response to hydraulic pressurization. This study confirms that hydraulic fracturing, interpreted through the PS model, is an effective method for determining CPB strength and provides a practical alternative measure to conventional testing methods.</p>\",\"PeriodicalId\":18588,\"journal\":{\"name\":\"Mining, Metallurgy & Exploration\",\"volume\":\"42 3\",\"pages\":\"1305-1323\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158861/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining, Metallurgy & Exploration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-025-01257-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-025-01257-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Fracture Initiation Pressure as a Measure of Cemented Paste Backfill Strength.
This laboratory-scale study presents the development and validation of a hydraulic fracturing technique to directly measure the tensile strength of cemented paste backfill (CPB), providing an alternative to traditional strength testing methods. Fracture initiation pressure (FIP) was used as the primary measure of CPB strength. Experimental results were compared with traditional benchmark measures such as uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), and critical Mode-I fracture toughness (KIc). Regression analysis of experimental results revealed a strong linear relationship between FIP and these benchmark strength measures, indicating that FIP can be used as a reliable predictor of CPB strength. However, traditional linear elastic failure models did not adequately explain the observed FIP values, as they significantly over-predicted the CPB tensile strength. To address this, the Point Stress (PS) model was applied, which provided a more accurate prediction of tensile strength, especially in cases involving small boreholes. The PS model explained observed effects of borehole size on the material's response to hydraulic pressurization. This study confirms that hydraulic fracturing, interpreted through the PS model, is an effective method for determining CPB strength and provides a practical alternative measure to conventional testing methods.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.